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Chapter 1

INTRODUCTION AND LITERATURE REVIEW

During steady operation of a liquid propellant rocket engine the
injected propellants are converted by various physical and chemical
processes into hot burned gases which are subsequently accelerated to
supersonic velocity by passing through a converging-diverging nozzle. The ]

operation of such an engine, however, is seldom perfectly smooth. Instead

the quantities which describe the conditions inside the combustor (i.e.
pressure, density, temperature, etc.) are time-dependent and oscillatory.
Such oscillations can be of either a destructive or nondestructive nature.
Nondestructive unsteadiness is characterized by random fluctuaticns in the
flow properties and includes the phenomena of turbulence and combustion
noise. Unsteady operation of a destructive nature, on the other hand, is |
characterized by organized oscillations in which there is a definite
correlation betweer the fluctuations at two different locations in the
combustor. Such cscillations have a definite frequency and result in
additional thermal and mechanical loads that the system must withstand.

Unsteady operation of the destructive variety, known as combustion
instability, was first encountered in 1940. At that time a British group
testing a small solid-propellant rocket motor observed sudden increases
of pressure to twice the expected level, enough to destroy a motor of
flight weight. Since that time every major rocket development program
has been plagued by combustion instability of some form. These

oscillations in the combustion chamber can have several detrimental effects.
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In some cases, particularly in solid-propellant rockets, instability

can cause the steady-state pressure to increase to a point at which the

rocket motor will explode. In liquid-propellant rocket chambers experi-

encing unstable combustion, heat transfer rates to the walls considerably

exceed the corresponding steady state heat transfer rates, resulting in

burn-out of the walls. If the chamber can survive these effects, mechanical

vibrations irn the rocket system can cause mechanical failure or destroy the 3
effectiveness of the delicate contreol and guidance systems.

The phenomenon of combustion instability depends heavily upon the .4
B
!

unsteady behavior of the combustion process. The crganized oscillations of

the gas within the chamber must be coupled with the combustion process in

such a way as to form a feedback loop. In this manner part of the energy

stored in the propellants becomes available to driée large amplitude
oscillations. An understanding of this coupling between the combustion ‘ ‘
process and the wave motion is necessary in order to predict the stability |
characteristics of rocket engines. 4

Combustion instability problems in liquid propellant rocket motors {

usually fall into one of three categories according to the frequency of

oscillation. Low frequency combustion instability, also known as chugging,

is characterized by frequencies ranging from ten to several hundred ,‘#\é

>y

hertz, nearly spatially uniform properties, and coupling with the feed

system of the rocket. This type of instability is less detrimental than

Low O

BT R S SR S g

other forms, and the means of preventing it are well understood.

frequency instability will not be considered.

A second type of combustion instability, which is less frequently o
This N

observed, has a frequency of several hundred cycles per second.
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3 type of osclllation is associated with the appearance of entropy waves

inaide the combustion chamber. .

The third and most important form of combustion instability is
known as high frequency or acoustic instability. As the name suggests, ! ]
this type of instability represents the case of forced oscillations of the ;
combustion chamber gases which are driv;n by the unsteady combustion process f ]

and interact with the resonance properties of the combustor geometry. The a

observed frequencies, which are as high as 10,000 cycles per second, are : {3

~ very close to those of the natural acoustic modes of a closed-ended | é?;
chamber of the same geometry as the one experiencing unstable combustion, ?;
High frequency combustion instability is by far the most destructive and : Ké
is the type to be considered by the follewing analysis. ;;i
High frequency combustion instability can resemble any of the @ié

following acoustic modes: (1) longitudinal, (2) transverse, and (3)

combined longitudinal-transverse modes. Longitudinal oscillations are § .Z
usually observed in chambers whose length to diameter ratio is much greater ‘na
e than one; in this case the velocity fluctuations are parallel to the axis
of the chamber and the disturbances depend only on one space dimension.

For much shorter chambers the transverse mode of instability is most

frequently observed. Transverse oscillations in rocket motors are
«naracterized by a component of the velocity-perturbation which is
perpendicular to the axis of the chamber but the disturbarces can depend

upon three space dimensions. Such oscillations can take either of two

forms: (1) the standing form in which the nodal surfaces are stationary
and (2) the spinning form in which the nodal surfaces rotate in either the
clockwise or counterclockwise direction. Transverse combustion insta- |

bility, particularly that resembling the first tangential mode, has been
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frequently encountered in modern rocket development programs and has been

the subject of much current research.

Historic Studies in the Problems of Combustion Instability

Since the early 1950's much experimental and analytical research
has been devoted to better understanding ihe phenomenon of high frequency
combustion instability. Most of the theories presented prior to 1966 were
restricted to circumstances in which the amplitudes of the pressure
oscillations were infinitesimally small in the linear regime. Prominent
among these are the pioneering studies of longitudinal instability by
Crocco [1] as well as the studies of transverse instability by Scala [2],
Reardon [3], and Culick [4]. A complete discussion of these theories is
given in the work of Zinn (5] and will not bLe repeatéd here.

Although linear theories provide the propulsion engineer with
considerable insight into the problem, their applicability and usefulness
in design is limited. The linear theories cannot provide answers to such
important problems as the limiting value of the pressure amplitude
attained by a small disturbance in the case of a linearly unstable engine,
or the effect of a finite-amplitude disturbance upon the behavior of a
linearly stable engine. In the latter case the result of many tests
indicate that under certain conditions the introduction of sufficiently
large disturbances into a linearly stable engine can trigger combustion
instability. Another shortcoming of linear theories is the fact that
their predictions cannot be compared directly with available experimental
data; for, in the majority of cases, the experimental data is obtained
under conditions in which the combustion instability is fully developed

and in a non-linear regime. Therefore, theories accounting for these
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nonlinearities associated with combustion instability are needed. A
more detailed discussion of the nonlinear aspects of combustion instability
can be found in a work by Zinn [5].

In the field of finite amplitude (nonlinear) combustion instability,
mathematical difficulities have precluded any exact solutions, and
approximate methods and numerical analysis have been used almost exclusively.
For this reason publications in this field are scarce. Notable amoug these
is the work of Maslen and Moore [6] who studied the behavior of finite
amplitude transverse waves in a circular cylinder. Their major conclusion
was that, unlike longitudinal oscillations, transverse waves do not steepen
to form shock waves. Maslen and Moore, however, considered only fluid
mechanical effects; they did not consider the influences of the combustion
process, the steady state flow, and the nozzle which are so important in
the analysis of combustion instability problems. Nevertheless, pressure
recordings taken from engines experiencing transverse instability reveal
the presence of continuous pressure waves similar in form to those
predicted by Maslen and Moore.

One of the first nonlinear analyses to include the effects of
the combustion process and the resulting steady state flow was performed
by Priem and Guentert [7]. 1In this investigation, the problem was made
one-dimensional by considering the behavior of tangential waves traveling
in a narrow annulayr combustor of a liquid propellant rocket motor. They
used a computer to solve numerically the resulting nonlinear equations for
various values of the parameters involved. Due to the many assumptions
involved in the derivation of the one-dimensional equations, the results

of this investigation are open to question.
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The successful use of the time-lag concept (sea Crocco [1]) in the 1

linear thecories prompted a number of researchers to apply this model to

PR T TR L T TR T

3 the analysis of non-linear combustion instability. By considering a i

chamber with a concentrated cownbustion zone and a short nozzle, Sirignano

; (8] demonstrated the existance of continucus, finite-amplitude, 1ongitudinal é
periodic waves. These solutions were shown to be unstable, however, thus |
indicating the possibility of triggering longitudinal oscillationms.

; i Mitchell [9] extended the work of Sirignano to include the possibility of
: | discontinuous solutions. In this manner he was able to show that the final ’?P

form of triggered longitudinal instability consisted of shock waves moving I
Y

back and forth along the combustion chamber, Mitchell also congidered the .
more realistic case of distributed combustion. . B
In the analyses of Priem, Sirignano, and Mitchell the oscillationus

were dependent on only one space dimension. One of the first researchers

to study finite-amplitude three-dimensional combustion oscillations was !

! Zinn [5] whose work is an extension of the linear transverse theories and

the analysis of Maslen and Moore. Using Crocco's time lag model Zinn f#

investigated the nonlinear behavior of transverse waves in a chamber with “; ;

a concentrated combustion zone at the injector end and an arbitrary

converging-diverging nozzle at the other end. In this case, it was
necessary to extend Crocu's burning rate expression and transverse nozzle h‘i
admittance relation to obta!n the appropriate boundary conditions for the
case when the flow oscillations are of finite size. As a re¢sult of this |

analysis Zinn was able to prove the existance of three dimensional

finite-amplitude continucus waves which are periodic in time. In !

—
s i e MLl s i e

addition, he was able to prove the possibility of triggering combustion @

oscillations. An analytical criterion for the determination of the
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stability of such waves was derjived, but because of its complicated form
and the limited capacity of available computers no specific numerical
results were obtained.

In more recent years other investigators such as Burstein [10]
have attempted to solve numerically the equations describing instabilities
that depend on two space dimensions. Aithough the resulting solutions
resemble experimentally observed combustion instability, this method
requires excessive computer time, and studies of this type for three-
dimensional oscillations will have to await the development of a much
faster breed of computers.

In a recent publication by Powell [11], the problem of analytically
and numerically analyzing multidimensional non-linear combustion instability
was investigated. The problem in doing this is that a system of non-
linear coupled partial differential equations whose solutions must
satisfy a complicated set of boundary conditions governs the phenomena of
combustion#instability. These boundary conditions may describe the
unsteady burning process of the wall of a solid propellant rocket motor;
the conditions at an idealized concentrated combustion zone of a liquid-
propellant rocket engine; or the unsteady flow of the entrance of a
converging-diverging nozzle. Previously, in an effort to obtain analytical
solutions to various combustion iﬁstability problems, investigators have
been forced to simplify the original problem to such an extent that it no
longer resembled the real problem that originally was to be solved. Powell
proposed a method to perform a nonlinear stability analysis with relative
ease. This method, applicable to both linear and non linear problems with
complicated boundary conditions, was a modified form of the classical

Galerkin method. The Galerkin method [11] is an approximate mathematical

vy
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technique which has been successfully employed in the solution of various
engineering problems in the field of acoustics. Powell used this method

to specifically study the non-linear behavior of combustion driven
oscillations in cylindrical combustion chambers in which the liquid
propellants are injected uniformly across the injector face and the
combustion process is distributed throughout the combustion chamber. Based
upon the results of his second and third order theories, the following
nonlinear mechanisms were found to be important in determining the non-
linear stability characteristics of the system: (1) the transfer of energy
between modes, (2) the self-coupling of a mode with itself, and (3) a non-
linear combustion mass source. Powell found that the self-coupling
mechanism was important in the initiation of triggered instability, while
the non~linear driving mechanism was important in the determination of the

final amplitude of triggered instability.

Statement of the Problenm

a

In this thesis, the problem of velocity-sensitive instability will
be considered. Based upon previous work on this problem, only transverse
oscillations will be considered due to mathematical simplicities. Also,
the specific geometry of the combustion chamber to be analyzed will be
annular or ring-like. The purpose of this thesis is to investigate the
mechanisms which cause these instabilities due to the combustion process
in a liquid propellant annular combustion chamber and attempt to state
which mechanisms or conditions impose the greatest effect upon stability
of combustion,

In Chapter 2 of this thesis, the governing equations of fluid

motion (i.e., balance of mass and momentum) are stated. From the equations,

d*
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the general acoustic wave equation for non-linear combustion is derived.
In this derivation, both steady state and deviations from the steady-state
conditions are considered and their effects incorporated into the general
acoustic wave equation.

In Chapter 3, the Galerkin method is used to obtain, from the
general acoustic equation of Chapter 2,.equations govarning the medal
amplitudes associated with the first two modes of transverse oscillation
in a thin annular combustion chamber. These equations for the annular
combustion chamber are solved numerically by the use of a Runge-Kutta
program for various conditions.

In Chapter 4, a set of approximate equations are derived from the
modal amplitude equations presented in Chapter 3 by use of the two-variable
perturbation technique. These resulting approximate equations are
expressed both in the modal amplitude and amplitude-phase angle form. In
this chapter, four special cases are presented for which closed-form
solutions can be found. These four cases are (1) standing wave--no
combustion, (2) standing wave--no gas dynamic nonlinearities, (3)
traveling wave--no combustion, and (4) traveling wave--no gas dynamic
nonlinearities. For problems not falling within the above categories,

a numerical analysis is employed to solve approximate equations.

In Chapter 5, the results contained in the previous two chapters
are discussed and compared. Stability limits are obtained and the effect
of neglecting various physical effects are discussed. In addition, the
accuracy of the perturbation method is evaluated. A summary of the
research contained in this thesis is presented in this chapter.

In Chapter 6, a statement of conclusions is made along with

recommendations for future research in this area.
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Chapter 2

DERIVATION OF THE GOVERNING ACQUSTIC WAVE EQUATION

In order to investigate the non-linear combustion instabilities

that occur in liquid propellant rocket engines, one must start with the

balance laws of mass and momentum. Also, for this problem, a constitutive

RSV

e N

equation was formulated relating pressure and density. Mathematically,

these principles are respectively

e
oy

G 2

* *
W f .
%%; +9 - (pu) = Bh (2.1) “
o
'ﬁ.:
" * * # 4
)
s, i 7). (2.2)
®  fQ & e
p = a2 ’ (2.3) ?
1 (
where
1] .
p - gas density -
* ‘ :
t - time }\
: 3 3 T .3 =
¥ - del operator of the system 5;§~T + Eyﬁ'j + 55w K
) ;
U - velocity of the gas s

o
'

fuel drop burning rate per unit volume

t
p ~ pressure of the gas
*
a

2. constant of proporticnality (in this case - speed of

sound).

10
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The * representation denotes that the above physical quantities are
dimensional. Equations (2.1) - (2.3) are based on the assumption that
the fuel drops serve only as a source of mass for the gas phase.
Interphase transfer of momentum and anergy are neglectec.

Combining equations (2.2) and (2.3), the resulting equation is

#® * IR [ ]
] ® *
{IE I S S H (2.8)

inlet

gas-liquid drop
mixture

exhaust

combustion chamber

variable area cross section

fuel drops enter here
through injector plates

Figure 1. Schematic of a Liquid Propellant Combustion Chamber
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A convenient non-dimensionalization of the variables is as follows: ;
" *
P = p,p (p, - initial density of gas) j
: * ,
u=zau
i f.11 |
= : f
= &
L p
) o
s
_ L* 3
th=owt g
-
" R i
- 2
p a Dop £
P :
# _Pold A
B=-LT B. : !,
I

Substituting these non-dimensional relations into equations (2.1), (2.3),

and (2.4), the results are

+—

%%+ V. (u) =8 (2.5)
->

p du o pa c¥u=-F 0 (2.8)
ot

(2.7)

where the unstarred quantities are dimensionless.
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Dividing through by density p, equation (2.6) becomes

Bog.05-% . (2.8)
Since,

§£ =% o,

o]

the governing equations can be summarized as

3p Ty =
5=+ ¥ . (pu) = B (2.9)

WL T Fe=-Ftno (2.10)
(2.11)

It will now be shown that to the order of approximation inherent
in these equations, the flow is irrotational, that is ¥xu=0. Todo

this, take the curl of equation (2.10) and set it equal to zero. The

resulting equation becomes

Tu (BT TE) - TxTtepeo0. (2.12)

Since the curl of any gradient is zero. This may be rewritten as

3x%¢3x(3-3m=0. (2.13)

U
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The vorticity B is defined to be :
LERERT (2.14)
Thus,
. .
u _ 2 -+ _a® .
3x3-€-~ﬁ(ﬁxu)-3-t-. (2.15) |
From the vector identity
R 92304 -%xFx D
it follows that
3.9 %002 - 3« 8. (2.16) »
Therefore,
Tx @) =7 xPoad) -8 x 3, . (2am)
Recognizing that the curl of any gradient is zero, equation (2.17)
reduces to : P
Tx@- T =-¥x@xm). (2.18)
Using the vector identity .
Vx@xBD =3 - VM-3F-H-A.NDE+ AV B
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equation (2.18) can be expressed as
L
Tx@ - ¥D=-1@-HI-EF.H - -9
N + 0 (¥ .00, (2.19)
; Therefore, equation (2.13) becomes
[ ’.
-§-§- @A D @I -0F - =0, (2.20) |
-
if{ C Equation (2.20) can now be modified by using the definition for the total F
! ,
! (comoving) derivative which is ¢
F-
Ee
- b
L ba | 2& e
bt - 3t ' M ¥ B,
Substituting this expression into equation (2.20) and simplifying, the
W resulting equation becomes »
Dﬁ > -> -
e @FH-@H. I+ d -0, (2.21)
Q
Rewriting U@ B asul¥ - (¥x U] which is zero since the divergence 'r"
j of the curl of any vector is zero, equaticn (2.21) becomes 3
|
C 5}
B.g.dD-a%H 4. (2.22) j
o The implications of this equation for a fluid starting from rest are as g

follows. At the initial instant of time (t = 0), the vorticity of any
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fluid particle will be zero. Thus, the time derivative of the vorticity

bl

of the particle will be zero, implying that B ° 0 at t = 0. Since
R and g% = 0att =0, it follows that fl = 0 at the next instant of
time. By induction, it can be shown that % = 0 for all time unless the
velocity gradient becomes infinite for any t = 0. It is assumed in what
follows that this does not occur and th; flow is treated as irrotational,
Since irrotationality has been proven, the velocity vector U can

be axpressed as
u=vy (2.23)

where ¢ is the velocity potential. Subsatituting equation (2.23) into the

left hand side of equation (2.10), the result is

- L
u u-r¥9= g¥-+ 3(%32) ~-axd

L G0 -Fuxd, (2.24)

For irrotational flow (§ = 0), the right hand side of equation (2.24)

becomes

3[-3-11 + (W . Wﬂ . (2.25)

Therefore, equation (2.10) can be written as

6[’2%'0‘ 15(34; . 3,‘,) + &n ‘ﬂ =0 , (2.26)

ot A 3 8 i B otk By S, St 0

— o —————— S—




s
;
)

G

e e i

17
Spatially integrating equation (2.26) produces
§{-+ﬂw v ¥y o+ np o= oalt) . (2.27)
where n(t) is a function of integration. From equation (2.23), it can
be seen that an arbitrary function of time can be added to ¢ without
affecting the result for . Thus, a(t) could be absorbed into ¢. The
same thing Is accomplished by setting a * 0 which results in
1] s
tho = -5k - T (2.28)
or
-(g—% iy Py W)
' (2,29)

p2e

. Thus, p and U are both known as functions of ¢. From equation (2.9), the

governing equation for % can be written symbolically as

%—% + p32w + W . 39 = B (2.30.a)

-(3-%1 + 3 Ty W)

\3

p=pée . (2.30.b)

Rather than combining these quantities immediately, it is convenient to

firat make further simplifications based on the nature of the physical

problem that it is desired to analyza.

RPN
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Steady State Solution

First, the steady state solution of equations (2,30) corresponding

to purely axial motion will be found. Define the steady-state velocity

potential § by

v cda) ' (2.31) ,

where ¢ (assumed small) is the measure of the deviation of the density

from its initial value (see equation 2.32 below), The bar notation will

represant steady-state conditions. The steady-state burning rate w is

defined from

B = a(z), (2.32)

While many other situations are possible, attention will be confined in
z 0(e), To indicate this let

=

the present work to the case when

@ = €0 (o = 0(1)), (2.33)
Thus, the burning rate B can be expressed as
B = eo. (2.3u)
Equation (2.30.b) can now be written
2 fa3) ? y
-k._g (d"
P =e. AR (2.35)

Using the Taylor series expansion for the exponential function and

7

retaining only the first two terms, equation (2,35) becomes

1]

— s e S
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2 !
‘ pli“,‘(? *ll!l (2.36)
Codu |
b %
Lo Substituting equations (2.31), (2.3u4), and (2.36) into equation (2.30.a) 5
5 and dividing the result by ¢ yields
3 ‘\ X '
1-’s£2§§uz+ [d'b]+9—§.— Le? (48 d%]sG
dz ) L3e da =/ \dz- (2.37) :
|
or '
i
2~ - 2«
4“3 3 ofa}) fa -
L mb‘ "2 € (dfo/' d—i-g"" TR + I (?-38) ‘
-
Retaining only terms of 0(1) produces b
s‘
. 2 ;
g St - 2.39) ;
y
C v for simplicity, only the case of uniformly distributad combustion (i.e. ,
3 = constant) will be considered. Thus, integrating equation (2.39) one '
obtains f
{
4 do -
? 0% tG (2.40)
' . d- = & |
1 where &% = u is the steady state velocity of the gas.
At the injector (3 = 0), u ®= 0, Thus, c1 z 0 and

(2.41)
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Deviztions from Steady State

It 18 now desired to investigate the stability of the ateady
gtate solution discussed above, Toward this end, an additional
velocity potential related to perturbations from the steady state is

defined by the equation

p» e [d+olx, vy, z, tI. (2.42)

A perturbation burning rate B is also defined by the equation

B=w+ cw. (2.43)

It is assumed that w = 0(¢) and this is indicated by defining a function

¢ such that o = 0(1) and w = o¢. Then equation (2.43) becomes

£(0 + €0), (2.44)

-
]

Taking the gradient of equation {2.42), one obtains

Vo = e¥5+ 901 (2.45)

on
Vo = elia, +7¥ ol (2.46)

From equation (z.d§), the time derivative of ¥ can be expressed as

a € 9
3t ’5% . (2.47)
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Substituting the equations (2.46) and (2.47) into equation (2.30.b)
and simplifying, one obtains
~[c§1+*sc2(ﬁ2 v fedo. h)]

ot (2.48)

propze

Expanding (2.48) in a Taylor series and neglecting terms of O(ea) and

higher produces the expression

_ - 2
p=p=1-e§%+e2[-k(u2+%-'V'w-u%%*’!s%)] (2.49)

Substituting equations (2.42), (2.44), and (2.48) into equation (2.30.a)

and dividing the result by e leads to

52 3 -2 - 32 ) 3¢\ 2
-ggg-‘f‘s[-ls-éT(u +'V'¢~V¢) ‘u-a-;g-ét'#';sﬁ(s%)]

S [1-e§%+e2[-3(62+%‘%)-\3§%

+ k(-g-%)z]J -(ng-‘;'-a- 3%) + (G'é'z + ¥o) - (— €0 g-%
+ e (-h(a° + Vg W))- u —g—% + % (31)2] =3+ €0, (2.50)

Neglecting all terms of 0(e?) and higher and recalling from the steady-
state solution that u = g% = 0z and g—:— = ¢ ylelds
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\
- a2 2 ? . - 929 29 3% _ 3¢ 3 |
) v‘*‘["i’t“% LOREE = EE 3 = XX A "
M55 ( T2 ) -
tapded 5;%; + (% . ¥ 3%‘ = -gg., (2.51)
: N}
i Substituting
? 3 2
j g (o - ¥ =% - Vb (2.52) >
‘ into equation (2.51), results in
i *
32 ) 32 d
- 92 Vo . 728 hygiat SR 1 -
5?3; V¢+e[2(v¢ vat)*z“azat*at"
3¢ (o2, . 3%¢ -
+ .5% (v o W)] z -0¢ (2.53) I
where only terms of 0(1) and 0(e) have been retained. Equation (2.53) can s
; ; ;
3 be further simplified by observing that v2¢ = %E% + 0(e). iy
4 i
Thus, the last term of equation (2.53) can be written :
39 [0z, . 32%¢) . 3¢ (32 _ 320\ _ .2
© 370 - 5E) = e 5 (5 o) - ) = oed). \
Since the other terms of 0(e?) have already been neglected, consistency
requires that this term be deleted and the equation be rewritten as
32¢ 2 . 9 - BZQ ¢ = 1.
m —V¢+€[2($¢ 35%)-*2\1 azat‘f-a-% g | = -0, (2.54)




T TR i e

RN

T T T TR e

B T VN U VO

L

gt,
|
{
|
|

bt L i L i i R— e " TR PRI A - _— v ve

23
In this thesis, attention will be confined to tranaverse inatability.
For this situation
¢ = ¢l(x, v, t). (2.55)
Therefore, equation (2,54) becomes
328 _ 2 ) L% ;
3 -2+ c[z(% [ at) +3% 8| = - oc. (2.56)
To account approximately for frequency changes due to baffles, nozzle
shapes, etc., a correction term of the form
2
2[3
e KV (at‘) (2.57)

was introduced into equation (2.56). This form, one of many possible, was

chosen so that the linearized form of equation (2.56) would reduce to Love's

equation for a one-dimensional problem. This linearized form of (2.56) is

3% 32 %
FXT Sig - ¢ Kegmygr = 0 (2.58)

Thus, it can be see¢n that the value Kwill affect the acoustic frequencies.
Physically, this is the purpcse of baffles, nozzle shapes, and other
physical parts of the combustion chamber. Therefore, inserting the

correction term into equation (2.56), the resulting equation becomes

32 2 - 3 3¢ 232)~
§¥% - V2 + a[?-s% v 2V o ¥ 3t - VBT C 9% (2.59)
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where K ig the correction factor. This non-linear wave equation will be

the basis for numerically and analytically investigating the transverse

combustion stability problems occurring in liquid propellant rocket

engines.

,
E: ‘
3 !
4 ;
|
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Chapter 3

DERIVATION OF WAVE EQUATIONS BASED UPON AN
ANNULAR COMBUSTION CHAMBER

In Chapter 2, there were no restrictions concerning the geometry:
of the combustion chamber in the derivation of the acoustic wave
equation. In this chapter, however, a set of equations will be developed
based upon a narrow annular combustion chamber. A typical cross-section
for such a combustion chamber is shown in Figure 2 below in dimensional

and dimensionless form.

G- @

(a) Dimensional (b) Dimensionless

Figure 2. Dimensional and Dimensionless Form of a Circular
Cylindrical Combustion Chamber

In Figure 2 (a), the dimensional quantities are
#t
r - radius of a typical point in the combustion chamber
%
R - inside radius of the combustion chamber

't
ﬂ -« thickness of combustion chamber's cross-section.

25
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In Figure 2 (b), the dimensionless quantities are

r - non-dimensional radius of a typical point

R-g=z=1

b

b -

ooy

The first major assumption to be made in the geometry of the combustion

chamber is

R < 1 (3.1)

which states that the circular cylinder can be thought of as a thin

{ring-like) annulus.

Define the characteristic length A by
L¥ = R", (3.2)

In restricting the analysis to an annulus, a transformation to polar
coordinates is convenient. Recall that the gradient and Laplacian

operators in polar coordinates are

<4
#
L3
~
-+
3 Lg&

ek
(3.3)

2
z

a2

2
V2=m+ J

3o¢ *

“~

?4~
Qr

d
'5-!-‘-'0'

e § 1 2
d

The second major assumption for the simplification of the velocity

potential is restricting

il
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¢$(0, t)
(3.4)

1 .

Therefore, using the operators of equations (3.3) on the function of

equation (3.4), the results are

Ve =

V2¢ =

Substituting the

equation (2.58),

wiar

i o
2 d
]

Now, express the

c+

-+ 3¢
M)

(3.5)

2
=

results of equation (3.5) into the general acoustic wave

the modified wave equation becomes

a2 3¢ a6 2% ) .

ser ' ¢ [a 3¢ * 235 " deor - XoETmes) T U % (3.6
velocity vector

-'

d+u (3.7)

-
where u - steady-state velocity vector

dl
U - perturbation velocity vector.

From the steady state solution in Chapter 2, the velocity vector was

defined aa

cid
]

™
fara
N o1
L2

z]. (3.8)
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Define the perturbation velocity vector by
-t . _a‘i -
u = £v¢ - e 9 e@w (3.9)
Substituting equation (3.8) and (3.9) into equation (3.7) and using
equation (2.23) results in
+ g.i 22‘ -1
use 3 Zz tegzy & =W (3.10)
To determine only the transverse velocity component of the perturbation
velocity vector, subtract the perturbed velocity component along the
axial (z) direction of the chamber from the total perturbation velocity
vector. Thus,
-> g - -> - -+
u, = ou ue, . (3.11)
In this case, since u = u(8, t) only, there is no perturbed velocity
component in the axial direction; therefore,
Srecdty
t =~ 38 e, (3.12)

It is now desired to find the burnihé rate o in terms of the parameters

in the wave equation. To obtain this expression, assume velocity sensitive

combustion with no history effects., Mathematically, the burning-rate

function for velocity-sensitive combustion will be expressed by the purely

phenomenological equation

Lk

-
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)
°=wnfi— (3.13)

where n is called the interaction index.
Using the derived results for the general time-delay integral
(discussed in Appendix A), the burning rate with history effects

accounted for by a simple time delay is

ul 2‘ u cZ)
- t t
os i i) o (5 5.1

where the subscript t represents the time delay. For simplicity, it

will be assumed that
12 12
f(“t )= Ye
€2 €l .

Then, the burning rate can be expressed as

°F "a[(%%)Q" 5@9 ZJ (3.16)

where § = 0 - no time delay
1 - time delay.
Therefore, substituting equation (3.16) into equation (3.6), equation

(3.6) can be rewritten

-:‘ar';t[ e ] g s
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"" + nw ((%%)2 -3 (g%}i)] = 0, (3.17)

There is no closed form solution of equation (3.17) that apbears likely.
The main purpose of the present work is to determine the modifications of
i solutions of the usual acoustic wave equations that are caused by the
presense of the nonlinear terms multiplied by ¢ in equation (3.,17),

Thus, rather than attempt a finite difference numerical solution.of
equation (3.17), the following procedure was adopted,

The solution is represented by the “ourier series

$(8, t) = £,(t) cos & + £,(t) cos 26 + g, (t) sin o

+ gg(t) sin 286 + . . . (3.18)

and initial conditions are chosen such that in the ahsenc¢e of the nonlinear
terms, the exact solution can be formed using only the first two terms of
the Fourier series. Because of the quadratic nature of the non-linearities,
: the second two terms in equation (3.18) represent a complete first order
*E correction to the acoustic solution due to non-linear gas-dynamic and
conbustion effects. Only the first four terms in equation (3.18) are,
therefore, retained and the approximate solution determined by this method

is the simplest one capable of illustrating the influence of the nonlinear
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terms. The approximation can, of course, be improved by retaining

additional terms in equation (3.18) but this is not investigated.
Substituting equation (3.13) into equation (3.17) and using

the multiple angle formulas to simplify terms containing products of

trignometric functions, one obtains
42 _ o at as 4% dg ]
Trtfroghy2e [fza't MR ol P8l A

d2¢
+ Ke a_tTL + 2new [f1f2 + 8181’] - 2jenw [fhfh + 811823 cos @

UL AU S,
A SUMT: *Qe[“zdt*fidt RS o PR T:

dzg ] -
+ Ke a-t-rl— + 2 new[f132 - f231J - 2jewn [1‘“_52T - fhgl;J sin ©

d2f . & dg dfl] d2f
+~72'dt +uf2+wdt +eE1dt 'fidt +“Ke~'zdt‘ !

- 2 .2 - 2 _ .2
+ dswen [gl - fi] - Mjwen [gh f“] cos 20 -

SRR R DO
Moot teuggt-es g tE G| e ET

- une[fig1] + j&ne[fhgh] sin 20+ . . . = 0, (3,19)
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5 Equation (3.19) i3 a summation of terms composed of some function of '

time t and a term containing O variation Since the equation must bhe

valid for all values of 0, each of the time dependent coefficlents

k! of the 0-terms must individually be equal to zero. Therefore, four

g ordinary differential equations governing the time-dependent modal

3
LA e

3 amplitudes fl‘ Bq> fQ and g, emmerge from this analyslis as ithe governing
.'i' ! A

equations to be used for analysis of instability in an annular ccmbustion

chamber. These equations are

AT el ar

N i = A,
K

-

V———

aze _af af af,  dg, dga]
——k b £+ oW +4Ef2~d-if~+f1dt +823—€~*+513{_——-

R geits

e 1 -
SO e it

Tr—
.o BT
AT e R

e

i

+ Ke E?rl“+ 2new [?1f2 + 3152] - 2jeny [fleQT + 81182J =0
A (3.20,a)

e e AT T e

Al o
[ad [S2
L]
+
m
-
-+
E
Q-LD-
r] Q
+
)
m
b
[ ]
Q-LQ-
Lad Ba,}
+
22

g df dg
£ -..--z.-g —..L-f e
1 4t 1 d¢t 2 dt

i e g

7 s it

dzg g
+ Ke EE?L + 2new ['fig2 - fzgl] - 2jewn [%11321 - f?tgig =0 v

3.20.b)

A&@,-ZM_,« TR

<

e S b P S i

d2f . ffz. dgl dfl d2f Y
3;21 + uf2 +w P *-egi Tl f1 T3 + 4Ke 3?31

.
- 2 _ g 2], " 2 . g2
+ Meun [31 fl] Ljewn [g“ f“] z 0 (3,20.¢) ;

—
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d2
t

dg af dg

g dzg
o J - 4 '4
*ugy + o gpR - o8y Frht ty grh| v vk g

\
- une [5131] + dnue [fmr“m' = 0. (3.20.4)

In the following work only instantaneous combustion will be considered.
Thus, the appropriate squations are equations (3.20) with j = 0, These

equations are recapitulated below.

LN N U S
e thrtegrhwthw teE "R

+ Ke + 2new .f1f2 + 3132] =z 0 (3.21,a)

LN R
Tty e gttt elg g - £y 3

a?f
+ LKe 3?7z + Meun [?12 - fii] = 0 (3.21.¢)

TR T T
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d?g . 48 df dg
rrrallll S ol [ A AT
d%g
+ UKe a-t-zz- - ung %11’1] = 0 (3.21.4)

,
The equations of (3.21) were solved numerically by the use of the 4
quartic (fourth-order) Runge-Kutta method. To use this method, the
equations of (3.21) are modified by defining the quantities
“
&k ° 34 :
. i
af 3
= a i
TS i
dg ';
-1 |
dt * bl
{
%, "
& * P, (3.22) ;
Substituting these expressions into equations (3.20) and solving these

equations for the highest derivative (in this case - second order), we get
S ?
T ° [—f1 - “(al) - 2ei(f2(a1) + fi(a;,) + 8:@“’1)
+ 81(b2)) - 2ne¢3(f1f2 + 3132)] /(1 + Ke) q
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b, -
:“ o el [-11 - w(bi) - 2:1(32(411) + fi(bz) - 31(‘2)
" E:Z. - .
Tl [‘“fz - "'(‘2) - el (31(b1) - fi(ai))
] ‘ '
| e [g - flﬂ] /(1 + uke)
- &, ;
I ° [-l+g2 - w(by) + el (gi(al) + fi(bi))
* une “131)] /(1 + i) (3.23)
. where i is the gas-dynamic index.
’ By the development of a computer program incorporating the Runge-
.
‘ Kutta algorithm which can solve systems of first-order ordinary differen-
P tial equations, the eight equations (3.22) and (3,23) were numerically
solved for the eight variables a5 ay, bi’ b2, fi' f2. - and g,-
; Different cases involving varying the gas-dynamic index, interaction
‘ P index, the correction variable (K), and the order term (epsilon) will be :
x; discussed and compared with the perturbation method of solution in a h
later chapter. In Appendix B, a sample program listing this calculation ‘
‘:*f appears. ‘




)
(
?
§
|
¥
|
3

Chapter 4

TWO~-VARIABLE PERTURBATION METHOD APPLIED TO THE
ACOUSTIC WAVE EQUATIONS

In this chapter, a set of approximate equations will be developad

from the governing equations fén the modal amplitudes (3.21), by the use

. of the two-variable perturbation method., The two-variable method is well %
f A
; suited to this type problem since one expects the solution to consist of K
sinusoidal functions with slowly varying amplitude. Applying this method, v
define two variables representing time ’?
i
E=t g
n=et, (4.1) g
Therefore, the four modal amplitudes would now be :
-
i
fl = fl(E.n) P;
|
£, = £,(£,n) :
81 = gl(EDn) l‘*
g, = B,(Ein), (4.2)
By applying the chain rule of differentiation, it can be shown that 0]
dZ_ 92 ¥4
il T T (4,3)
>
and
36
|
¢
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2 2
42 a M + 2 g—&-— + ‘2
dv? 3;2 anl (u.u)
where 2 » !'1. fz. 8 & reapectively for sach of the above equations.
By substituting equaticns (u4.3) and (4.4) for each modal amplitude into
equations (3.,21) and keeping terms only of 0(1l) and 0(ct), the resulting
equations become
a2¢, 22f,  _of) of of 98,
—-'r-ag + !1 + ef2 ——363!\ + 0 -5-€- + 2f2 -a-é'— + Qfl -é—é- + 282 -a-E—-
ag, 2%f,
+ 231 3¢ + K R + 2nu(fl o * 3132)]= 0
3% 2%g 28 of 138, of
1 1, =" 1 2 S2
—Taﬁ + 8 + 8[2363 o--------'ae + 2g2 s-g—- + Qfl -a-E- - 231 3%
2g, d%g, -
- 2f2 -a'-E- + K -—s-é-—- + 2nm(flg2 - fzgl)] = 0
32f a2 of 38 of
2 2 2 1 1
Wttt thw T T
azf2 e
+ 4K 5?"" + 3 mn(gl -*fl )] =
a%g 34g 2g of 28
2 o) 2 poy 2 m]-.- - ---1-:
——'-z-—ae + “32 + CE‘BEBn + 0 3¢ - 8 5% i"l 3E
a2g
(4.5)

+ ux—a-a-zi - Wn(%,8)1=0.

T T g ey
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From the straight-forward perturbation method, define the modal amplitudes

by the series expansions

fl ® flo(cbn) *c fll(EDr‘) e
|
S f? = f2°(55n) + ¢ f'zl(ﬁoﬂ) * o o
E
{
3 g
- ‘}
g 82 b Szo(ﬁm) +e gzl(E.n) L S (‘&.5)
?‘ ; Again by applying the rules of differentiation, it can be shown that
3 32 aT 3K
E % 9 53¢
] 22 2%, a%
352 1A 13
1 32Z _ a2r 22K
1 = b7
g 2€an - 3E3n ' © 3Ean B S
o vwhere 2= fl. f2, g, 8,
:' {
1 T = £100 Fa00 B1ov 829
7; and K = fll’ le, 8110 897> respectively,
i
Substituting the expressions of (4.6) and (4.7) into equations (4.5) and
keeping terms only of 0(1l) and 0(e), the resulting equations become
{
L




Sl b et Uhas o it lubidy o0 o AL BRI —
® Y ; i TR S e Ty T ey
N B D Ty YT T TN TR R e s
r " - e e e ey

Ry’
v
2
Y
Elu
F
4]
}
E
p
A
Y
i
b
2
b
f
-
A
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2t 2%t a“ of 3
10
weoth ‘["'7'}'):'*’ T"S""'“?"u*”zoaglo
of g og 2
20 e ) %820 10
tA sty r Y Wy 3Tt K
+ 2nm(f1° 20 * 8708007] = 0
228, 22g,, 28, _ 98, of ”
R +glo+e[j-5-€2—-+gn+2ﬁ— -t-cy-s---—-E *2820’5’"’5 ,«»
el
98 of og 0“g 1.
20 20 10 10
TR TanllC TS ol PP T 2" F
’.,th
.y
* 200(f) 4820 = 2081077 = 0 i
azfm 32f azf 3f20 i
It uf *5[—5'52-*“1’ *2?"""5% +o ';:'
g 3, a2f .
10 _ 20 1—
'!' 2 - 2 - §
&ow -~ fom 2 4 W oggr— + qunlg - £,,91 =0 e
3%g a%g 823 ag
20 21 820 2
362t WEyg telgprrugy 2 gt o "'5'5'9'
hﬁ'v
aflo e agw 32g
BT Tl T ‘TT“' wn(f)58)0)2 = 0. (4.8) '
By separating the terms of 0(l) and 0(e) in the equations of (4,.8) and | i
equating both sets of terms equal to zero, the resulting equations become - ‘
32¢ :
10 ‘
367t fp =0
: - o S s iieds B e 45, L, |
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'3 3.2310

& atZ T8O ,
1 0

{ WL Myt 0

b ¢
3%,, '

557 t'8p0 % 0

(4.9.a)

32f of of af Q
e A N R PO
3Ean T3 203% 10%;

~2820'5-E~ ~ 2, Yl K FY3 ng(f, £

10520 * 81085,

2 2
38 9810 -8y e 10 e 2820
3Ean Y €20 3¢ 10 3¢

- B 20810’

38 af :
- 20 10 10 '
+* uf T om —————— - ————— oy, —————— Om— (’
9E2 21 7 -2 Y 810 3¢ * f10 A

3 a2f 1

- 20 _ 2_¢ 2 i

g - gn(e? - £)02) N

DNy

* :

i a%g 2% R of 5

1 21 20 _ .. %Ry 10 X

1 e T A T T

1 SARS

1 . B0 3285, ?
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The equations of (4.9.a) are linear second-order differential equations.
Therefore, it can be shown that assuming the appropriate form of a solu-
tion, the results become
£19 = Ay(n) cos £+ B,(n) sin &
819 = Ay(n) cos £ + B,(n) sin ¢

£

20 Aa(n) cos 2E + Ba(n) sin 2

g0 * A,(n) cos 2 + B (n) sin 2¢, (4.10)

Substituting (4.10) into (4.9.b) and using the multiple-angle formulas

yields
22%f dA
11 - P T . §
- + £))¢ 2[— T - 5 A9+ 3(AA; + B By)
1 ;
--(BJ.B3 + Alaa) + E‘AzAu + BQBM) - (AzAu + B2El“)

1 —1 1
- —-KBl + m’['f(AlBS - Aaal) + -2-(A213u - BzAu)]] sin £

2
-2-S-B-l-+l"n +5(AB A.B.) + (A.B AB,)
no T 2% T a\Agt - M %, 1°3 ~ A3

1 1
t3 (A“B2 - A:,Bu) + (Aznh - B2Au) - KA,

-] 1
tnul5(A1A, + B B,) + 5 (A2A“ + BZBH)]] cos E+ 4 4 o

e




b2
32811 dAz 1 - 1
ez BT I aw m 2o rEMA T REY

1
‘(AlAu + 3134) + (A2A3 + 3283) - 5(A2A3 + 3233)

1 =1 1
- 5 KB, + nul3(A;B, - A,B)) - 3(AB, - A352)J] sin €

-2?;?-+-:-L-'&-B +-l-(AB-BA)+(AB-AB)
dn 272 ¥ 4 174 g |

1 1
-(ABy - BA,) - 5(AB, - AB.) - S KA,

-1 1
nm[-é-(AJ.A,4 + BlBu) - -2-(A3A2 + 8233)]] cos £+ . . .

3%f dA
21 . 31—,
72 + Hle = -2[-2&-':‘-— - "2"0(2A3)

Lelip2a_a2y_ L2 _ a2 .
+2[-2-,-(32 A2) 5—(31 A )J+‘:K(-u33)

dB
1 -~ 3, 1- 1
+ gwlAB, - AlBl]] sin 2¢ '2[2"‘"@ + 50(2B4)+5(A,B,-A,B,)

- L=l 2 _pna2 lep 2.pn 2
+2K( l#Aa) +nﬂw[-2-(A2 Bz ) - -5(1\1 BJ. Y1) cos 26+ . . .

2
%851
ag?

dA
X v 1 1.1
+ %21 = -2[..23-"—- + -50[—2Au:] - 'Ec-i-(Ble - AlAz)

+ 3(B,B, - A AT + 2K[-4B,] - %ﬂm%(Ale+A2Bl)J] sin 2¢

[‘mu 1- 1.1 1
-2L2-c1-r‘— + 50028,] - 5{5(B,A, +A B, )+5(B,A, A8, )]
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+ 2K[-4A¢J - %n;t%(AlA2 - 818213] cos 28 + . . (4.11)

where + . . . indicates terms multiplied Ey sines and cosines of integral

i
!
. B
et T TR T TS R

multiples of £ other than those shown. The particular solutions corre- i

L sponding to the terms shown on the right-hand sides of (4.11) will contain

e .
G RSP VA

terms proportional to £ sin nf or £ cos nf [n = 1 for (4.11.a, b), n = 2

a5

for (4,11.¢, d)]. Thus, the second approximation would be unbounded for

large £ while the first approximation is bounded for all £. These

unbounded terms are called singular terms. The terms on the right-hand

sides of (u4.11) indicated by + . . . do not lead to singular terms.

- The idea of a perturbation solution is that higher order terms in

ey
.

SRR 4 X v
AT T

the series solution represent small correction#'to this first term to
obtain a uniformly valid expansion. The presence.of this singularity
causes this fundamental idea to be violated. Therefore, since the expres-
sions of n dependency are independent of the variable causing the singu-
larity, the n-dependent expressions can be set individually equal to zero ;

to avoid this problem. Therefore, from equations (4.11), the resulting A

equations, which are eight ordinary first-order differential equations

o s A B e ».;é&»;&;.u.éhm.,bé‘ : "'c

having n dependency, become

dA
L 1= 1
TR + 298, + %xnl + Z{AJA; + BBy + AA, + BB,

i ml & e aiuriiia

+ 3nw[B.A, - AIBS + Bz“u - AzB“J =0

1, 1= 1

. ipie Y B
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L
+ EnG[Alha + ByRy + A, + BB ] x0

' +35a +3p. +3aA +BB - AA, -B.B,]
Tt 7oAy + 3KB, + 3LANA, + BBy - AjAy - BBy

1
+ 5n§t-AlB“ +AB, +AB, - AB]=0

dB

2, L .k
r: vl L

1
FKA, + 5{-Au81 *BA) - ApA, 4 ASBQJ

1 -
+ EQEIAlAu + ByB, - AgA, - B,By] = 0

gﬁg + 25, + UKB, + £ [A,2-B.2+B 2~ A 2]
dn_ ~ 2°%a 3tEth 2 1 1

+
ﬂ:‘-
3
3
>

!—l
<]
o
3

AQBQJ =0
1 1,
=t Edba - 4KA4 + 7{AB, - AlBl]
1~ 2.8 2 .42 2
+ WUEAQ 32 Al + Bl l=0

1 1
e + ZoA, + 4KB, + E{BLB2 - A1A2]

+ -é;',h[AlB2 + AQBLJ 2 0

o1 1

W
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s Since equations 74,12) are first-order nonlinear ordinary differential
equ tions, the fuurth-order Runge-Kutta program, previously developed,
can be used to solve for the modal amplitude coefficients. By finding

these'coafficients for varicus points in time, a relation between the

9 results of equation (3.21) and equation (4.12) can be observed to the

approximnation of order «.

Solving equations (4.12) for the highest derivative (first order

5 in this case) and substituting n = et, the governing equations for the

Runge~Kutta program become

; r'_"\‘
b | 3
§ dAl-[""A g -1 (AA +BB. +AA +BB LM
: ar cel-3oA) = FB) =7 (AAy + BBy + Ah, + BBy) ;
1 - o
- grulB)Ag - 438y + Bohy - AB,))
Foo = el goBy + KA - 5(ABy - BjAy - AB, + As8,)

A 1 -
3'12 - Eﬂw(AlAa + BBy + AMA ¢+ B2Bu)]
3 dA
z e = e - 398, - 3By - F(ALA, + BB~ Ay = ByB,)
c
- $05(A,B, - AB, + A8 - AB,)]
d8, = 1 2
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- Z5n(A A, + BB, = AA, - B_B.)] !
2 Tl 174 372 2737 :
“3-er-la-uxa-Mz.aunz-aa)
Te % ol Ry - HKBy - (AT - B BT - A _
i - -
- §nw(A;B, « A B,)] |
daazeb-*%'a + UKA, - &(AB, - AB.) 13
T 2°°3 3TN " M5 :‘g
1 F%
- Y 2 - 2 - Z 2 3 .'v
-I-s'nw(Az B, A%+ By )] )
'}
g
df-‘i-e[—-l-&'A ~ UKB, - +(B.B, - A,A,) g
dt 2°0 TS T 142 "
i~ a
gre(a;8, + A58))] ]
dB,, 1 1 E
T = ¢[= -é-oBu + '-l»KAq + -E(BZAI + A2Bl) §
1—
+ zun(AA, - B,B,)] . (4.13) y
It is often convenient to express the equations for Ai and Bi in s
terms of amplitudes, C T and phase angles, ¢ 1 which are also functions
of the slow time variable n. Mathematically, we can express the relation- N ;‘
ships between the quantities as R
Ay = Cy cos ¢, (4.14.a)
B, = C; sin ¢, (4.14.b) ’ i
.
)
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dAl dC d’i
y T * g cos ’i - Ci e sin ')1 (4.14.0)
) ' = an sin Oi + Ci . cos 01 (4.14,4)

| where 1 = 1, 2, 3, and 4 for each of the aquations above, Substituting
| the exprassions of (4.14) into the first two equations of (4,12), the

o resulting equations become

dc d¢, 1 - 1
Eﬁl cos ¢ - C; ;e sin ¢ + 35 oC, cos o t §Kclsin 4

l -y 3
! + 5{C1L3 cos ¢, cos ¢3 + C,Cy sin ¢, sin ¢3

1
‘ #,C, cos ¢, cos ¢, + C,Cy sin ¢, sin ¢,] + Enﬁtclca

sin ¢, ©os ¢5 = C,C, cos ¢, sin $3 + C,C, cos ¢, sin L)

‘-
= C,C, cos ¢, sin ¢, 1 =0
| dcy d¢, 1 1
c s sin 9, +C; qn- cos ¢, * 30C, sin ¢; = FKC, cos 9
1
+ E{clca cos ¢, sin ¢3 - C,C, cos ¢4 sin ¢y
«
1
= €0y co8 ¢, sin ¢, + C,C, cos ¢, sin ¢,] + Fnalc C,
GOS8 ¢) COS ¢4 + C,C, sin ¢, sin ¢5 + CC, cos ¢, cos ¢,
C )
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+ C.C sin 02 sin OwJ 0, (4.15)

2

Multiplying the first equation by cos ’l and the second equation by sinol.

adding the two expressions togather, and using appropriste multiple-angle ;

identities from trigonometry, the resulting equation for ¢y becomes 1)
) 1= 1

el 5001 + 5{01C3[cos(2¢1 - ¢3)]

Lf

+ €0 [cos(d, = 4, + ¢)1} + %n&l'{clca

-
[+ 1}
-~

sin(2¢l - ¢3) + 0,0, sin(¢2 -9, *+ ¢l)} =0, =y

Similarly, multiplying the first equation of (4.1%) by ~sin ¢1 and the
second equation by cos *l’ adding the two expressions together, and using
appropriate multiple-angle identities for trigonometry, the resulting
equation for ¢l becomes

d¢l C2cu

1 1
- .EK - —2{(33 gin(2¢l - ¢3) + °-C~I~ 5in(¢2_¢l&+¢l):‘!

c,C

+ %natca cos(26,-6,) + —%Iﬂ-cos(¢l+¢2-¢“)] =0, (4.17) N

Using these procedures discussed above, equations for 02, P CS’ $as Cu,

and ¢u can be derived. Thus, these transformed equations are 2y

dc
2, 1 |
Too 590, + 30C,C, cos(p =g, +e,) - € Cac08(20,-04)] 1

[

LS
»

N -%nmfclcusin(h-%wz) - C,C,51n(20,=05)] = 0
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9 1. 1.0

o To-FK- 3{-5-—- sin(9 -9, *,) - C g 8in(2¢,-9,)]

c,c,
+ §n't-a-— cos(¢l ¢u+02) + cacos(2¢2-¢3)J 0
dc"+-l<':‘c + HC,2008(2¢,-4.) - C,2c0o8(26.=.)] S
In * F9Cy * §lCy cos(20,-45) ~ C)2cos(2¢, -4, !

- - T4nilC,281n(20,-45) = C,%ain(26,-0,)] = 0

; dé, 1% 2 c,?
: T - UK+ -{c sin(2¢2~¢3) - c, sin(2¢l~¢3)]
022 c 2
+ -i%ﬂ&[-é-- cos(2¢2-—¢3) - -di—- cos(2¢l-¢3)] = 0
3
S 1 - 3c.c cos(s.+4,-0,)7 + Enale.c |
an * 39C, - §lC Cpcos(8+0,-0,)] + Fnulc,c,
sin(¢, + ¢, = 4,01 = 0 |
:

deé c,C ¢,c | 1
Eﬁi" 4K + l{ é 2 sin(¢ +¢2-¢“)] - “ﬂN[~':2' L
cos(4, + ¢, - 9,01 = 0, | (4.18) }

Equations (4.16), (4.17), and (4.18) are the general combustion

equations in terms of amplitudes and phase angles. From this point,

special cases can be investigated isolating certain conditions and closed-
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form solutions can be obtained for these cases. It is convenient to do
this in order to check the closed-form results of the special cases with
the results from the general equations (4.16), (4,17), and (4.18) when

the same conditions are imposed. !

The first case to be evaluated is the case for standing waves

with no combustion effects. To simulate standing wave effect, set the {
amplitudes 02 and cu and phase angles ¢2 and oy equal to zero., This \\‘
automatically satisfies four of the eight equations (4.,18). To achieve

the no~combustion effect, set the interaction index, n, equal to zero.

Also, set the correction variable, K, equal to zero since the effect of

K will be investigated separately at a later time. Imposing these con-

ditions, the governing equations reduce to

dc .
1 1 - 1 =
; & t3 oCl + 5 C']_C3 cos(2¢l-¢3) =0 (4.19.a)
E
] ! - & [c.sin(2¢,-4,)] = 0 (4.19.b)
: dn "2 '3 1773 )
s, L 5e. - ¢ 2co8(29,-4,) = 0 (4.19.c) f
dn 2%3 78 ™M “917%3 : i
dé c.? L
a 1" !

The initial conditions imposed for this case are

cl(o) = 1

T
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03(0) ®¥ 0
$,(0) = ¢,
$3(0) = 45y (4.20)

To attempt a cloged-form solution, let

c, ® e'*a“rl (4.21.a)
Cy = e"';“ra (4.21.b)
;-:-]-‘- 2 o~ ¥n(. o)F, + o'?’;"(;?-) (4.21.¢c)
;;1 -« o ¥ ST, + e'%5ﬂ(§§29 ) (4,21.d)

Substituting these expressions into equations (%.19.a) and (4.19.c) and

dividing through by e"&m. the resulting equations become

dF -

o=+ 3 cos(2g - 9)e™¥1"s 7 0 (4.22.)
dF -

.d..n.g. - %‘.QOS(zOl - ¢a)e’k°n}?12 =0 , (4.22.b)

Multiplying equation (4.22a) by 1/4 and equation (4.22b) by F./F, and
adding the two equations, terms containing the m::s("..’«)l - ¢3)e"355" are:

eliminated. 1In doing so, the result becomes
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dar F, 4dF
1 3 3
reul “?:'EH' =0 (4,23) }
Multiplying through equation (4.23) by F, gives
Ld rp24ur 210 (4.24) ;
2dn *%2 3 . ‘

Integrating with respect to n then dividing by 1/2, the resulting equa-

tion becomes

2 2 -
rl + ura D, (4.25)

where Dl is a congtant of integration. This constant depends upon the
initial conditiors imposed on the problem. From the initial conditions
given in (4,20) and using the transformation (4.21.a) and (4,21.b), it can
be shown that Fl(o) = 1 and ra(o) = 0. Therefore, D, equals to 1. Thus,

equation (4,25) becomes

2 23 . 4p.2
Fl 1 uPa (4.26)

Taking equation (4.26) and substituting into equation (4.22.b), then

gseparating variables, the resulting equation becomes

dF -
3 . %e‘%U"cos(2¢l-¢3)dn . (4.27)
[1-4F,2] ‘

Letting 2¢l - ¢3 = £n, which satisfies equations (4.19.b, d), yields

cos(2¢l - ¢3) = (—l)!' where £ = 0,1,2,3. . . Substituting this expres~

sion and integrating the above equation, the resulting equation becomes Ny

e te AT

G o a

-~

-9
[ "
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1. .- 1. 2 -¥n 2
5 tanh™~ 2F, = % f- Fe +DZJ(-1) (4.28)
where D2 is a constant of integration. Using the initial condition P3(0)=
0, then, it can be shown that D2 =2 2/0. Substituting and taking the

hyperbolic tangent of both sides of equation (4.28), the result becomes

Fy *itanhie(-1)5(2-e7¥M)] (4,29)

Substituting this expression into equation (4.26) and simplifying, the

resulting equation becomes

2 -
Fl = sech[£:ll (l~e‘k°n)l . (4.30)
20
Substituting equations (4.29) and (4.30) into equations (4.21.a) and
(4.21.b), and substituting n = et and w = 0¢, the resulting closed-form

solution for wave amplitudes Cl andAC3 are

- £ -
¢, = o ¥ ech[EEL(167¥)]) (4.31.a)
2u
“dut 2 y=
¢y = 2o (tann[El 1)) (4.31.b)
2w

To find expressions for ¢, and ¢4, substitute the relation that 2¢l-¢3=£n
into equations (4.19.b) and (4.19.d) and integrate and evaluate the con-

stants of integration with the initial conditions; the results are

4 = 439

TS
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by = O z%-zu (4.32)

where %o is a constant and 9y is &n radians out of phase with 2. It

can be seen that a special set of initial conditions is necessary to be

consigtent with this solution. A representative set is $o = %30 ° 0 )
which corresponds to £ = 0. '

Inspection of equations (4.31) reveals that the magnitude of Cy ¢
continually decreases with time while the magnitude of Ca first increases N
and then decreases. An interesting special case of equations (4,3l1)
occurs in the absence of steady-gtate combustion (@ = 0). The results of

this case are ’ i

[g]
1

L
= sech[izé%-ﬁﬁﬂ

D

(p]
1]

: tanh[-g:i%fﬁ] (4.33)
' .
These results show that a disturbance in the form of the first mode is I
transferred to the second mode as time increases. It is thought that this
indicates the beginning of the steepening that leads to the formation of a
shock wave. It can be seen that the presence of damping, in the form of "
steady-state combustion, inhibits this process.

The second case to be investigated is that of standing waver with
gas~dynamic nonlinearities neglected. To simulate the standing wave

effect, let the amplitudes C, and cu and the phase angles $5 and ¢y equal

2
zero. Again, this automatically satisfies four of the eight equations of

(4.18). To achieve omission of gas-dynamic nonlinearities, let i = 0. o

Also, let the correction variable, K, be equal to zero for simplicity.
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In doing so, the resulting equations, based upon equation (4.18),

become ;

-

=

Lt 7:&»[(:3_03 sin(2¢, - 9401 = ©

3]
<+
wj-

3-;—+ -;'- n':.&l:c3 cns(2¢1 - ¢3)J =0 ' !

E;—-+ 3 003 - 15 nwl ¢, sin(2¢l ¢3)] = 0 ;

3 5 . G°
ET]—-+ 15 nw[--c—:;— COS(2¢1 - ¢3)] =0 , (4.34)

& The initial conditions imposed for this case are :

it
[

Cl(O)

#
Q

ca(o) =

$,(0) = ¢,

g $5(0) (4.35)

]
-
()
o

Let 24»1 - "3 = (28 +1)/2,8=0,1,2. ... This implies that sin(2¢l
'?; - ¢3) = (-l)z and con(2¢l = $3) = 0. Substituting into (4.34) and solving |

in the manner indicated previously one obtains expressions for the ampli-

tudes for cl and c3 which are

c, = e‘*ﬁtisecbfg ne(-l)£(1~e'%mt)]} (4.36.a)

1

1
3
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¢ = % canr?Z ne(o1ybir-a Wit ) (4.36.b)
3 *

9 = 10 | (4.36.¢)

by = 26, - 3-%1”3)" , (4.36.4)

where ¢10 is conatant and $5 is (28+1)n/2 radians out of Phase with 2¢;.
As in the previous solution, special initial conditions are required to
produce this solution. A representative set is ¢10 =0, ¢30 & «%/2, which
corresponds to £ = 0,

The secant and tangent both become infinite when their arguments
take on the value tn/2, 1In (4.36.a, b), the arguments of these functions
Start at zero at t = 0 and have a maximum absolute value at ne/23/2.

Thus, if ne:/23/2 < w/2, the tangent and secant never become infinite and
Cl and C3 eventually decay to zero due to the influence of the exponential
function. This is a stable situation. If, on the other hand, ne/23/2 >
1/2, the tangent and secant become infinite at t, = (Q/B)len[l—2%n/(ne)lf
causing cl and c3 to bacome infinite. This is 4n unstable situation.

Thus, the boundary between stable and unstable behavior is indicated by

the equation

ne/23/2 = n/2, | (4.37)

The stability equation in the n-¢ plane has the form ‘ s

n = 2%5/5 = 4, 442/¢, (4,38)

This has the form of a rectangular hyperbola and is independent of w, o
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g For the cass of traveling waves, it is more convenient to work
i o
A f with the general perturbation equations expressed in modal amplitudes
i § in terms of the real time variables, equation (4.13)., To simulate the
~ i
Q‘ f effect of spinning or traveling waves, let the following modal ampli-
4 L
1 i tudes be equal. These relations are
‘ By =4y
| By = 43
;
S
i ;' B1 = -A,
|
5 83 = -A, (4.39)
? . It can be shown that substituting the relations (4,39) into equation
f' ; (4.10), expressing the results in terms of the real time variables, sub-
. stituting these expressions into equation (3.18), and using appropriate
f O multiple-angle formulas leads to
3 8(6,t) = A,cos(t-0) - A.sin(t-8) + Aycos 2(t-0)
L -A,sin 2(t-0) + . . . . (4.40)
'} which has the form of a sum of traveling waves. Substituting the expres-
} o sions in (4.39) into equations (4.13), these eight equations reduce to
E four pairs of identical equations. The four independent equations listed
below are
N dA 1-, .1 -
T = e[~ 5 oA 45KA-1(A A +A A )-nu(A A, A A )]
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dA2 =z g[~ é-EA :— i-KA «1(A,A, ~A.A, )enw(A A +A.A. )]
at 2 g = 5 RAY=IWA Ay mRofag HIuli A, 34, By
da
3o ° cl- 5 oAgtuKA + Ti(A 2-A,P) Hnu(A A,)]
dA"e:[—iEA “UKAL+ & 1(A.A,)~ nd(A,2-A 2)] (4,41)
at 2 Ihymt AT g 1WA Ryl FURA, TR )

By making the substitution, we have reduced to a system of four equations
and four unknewns. By solving for the modal amplitudes Aj' the modal
amplitudes Bj are readily computid by using the relations of (4,39) to
determine the entire nature of the wave form.

For the case of traveling waves omitting gas-dynamic nonlinearities,
let the amplitudes Al and Aa equal zero. Then set i, the gas-dynamic
index, equal to zero. Again, for simplicity, let the correction variable,
K, controlling physical chamber configurations, be zero, In doing so, in

terms of the transformation variable, n, the resulting equations become

dA2 l = "[A =
-a;-—+—2-aA2-nu 2Au]-0
da
4 l - 1l -
W*?oﬂu'?“w%=° (“.HZ)

which is a system of two equations and two unknown modal amplitudes. To

find an exact closed-form solution to these equations, let

. =}on
A2 = @ Pl

o

IR

JR—




| 9 |
| |
| A - - dF
o 2 _ _~kon ~¥on __1
xy ralll (-~ 3 a)Fl + e ﬂ
: dA - - dr ‘4
: i -Won, L - ~¥on __2 ‘
3 e (-Fo,te el (4.43) i
. !
Using these transformations, the procedure for solution is exactly the 1
game as for the standing wave case for both no combustion and no gas
| dynamics. The initial conditions for this case are B
A2(0) =1
A,(0) = 0 (4.44)
Substituting the expressions of (4.42) into (4.41), the resulting equa-
tions are
dF - b
-&-ﬁi ~ n3F,F, e ¥ = o \
)
é dr :
a 2 L1 =c o -%on .
§ in 5 nwkl, “e 0 (4.45) ;
L
with initial conditions
Fl(o) =
Q
P2(0) = ]
; Solving these equations in the manner outlined in the standing wave solu-
G
tions, the results are
Q
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F, = sec[—%-’-‘-{i (1—0"&5“)]
a
Y? na ~Xdn
r, oz BA0CYZ 08 ()~ (4.46)
2 a5 ? G

Expressing the results of (4.45) in terms of modal amplitudes by substi-

tuting into (¥.42), the resulting equations become

A, = e‘*a"‘sec[-/-g- B—E—'- (1-a"¥9)3

o
“on - -
A+ — tanZ B8 (17N (4.47)
/2 g

The results for traveling waves (4,47) are quite similar to the results
for standing waves (4.36) for the case of no gas-dynamic nonlinearities.
The same behavior can be expected as was diccussed in the standing wave
case about the nature of oscillation of the mcdal amplitudes. The only
significant difference is the value to determine the boundary of stability
for the interaction index governing the combustiocn terms. The stability

condition for traveling waves is

-3 nNe =3 (4.48)

Thus, the equation of the stability boundary in the n-e plane is

.oon 2,22
n = X . (4.49)

€ €

Comparing equation (4.49) to (4.38) shows that the stability boundary for

the interaction index is half as great for the traveling wave case as for

it i, el U LAl S loas At e i it s g et R G
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the standing wave case for any ¢. This will be verified in a later pre-
santation of results of various numerical cases.

For the case of traveling waves with no combuation, let the ampli-
tudes A2 and A“ equal to zero, Then set n, the interaction index, equal
to zero, and, again, let the correction variable K equal to zero., Sub-
stituting into equations (4.40) and transforming into variable n, the

results are

(4.50)

with initial conditions

4,(0)

]
f—

u
<

A3(0)

which again is a system of two equations and two unknown modal amplitudes.
To find an exact closed-form solutinn to these equations, use similar

tranaformations as shcwn in (?.42), In doing so, and simplifying, the

results are

ar -
1, -kon -
& + e FIFQ =0

dF2 1
& "we

‘*““rlz = 0 (4.51)
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with initial conditions

rl(o> u ]
PQ(O) =0
Solving these equations in the same manner as before, the results are

F, = sech[l/a(l-e'%an)l

1

F, = & tamn[1/5(1-07M)] | (4.52)

2

Again, expressing the results of (4.51) in terms of the modal amplitudes

of the form of equation (4.43), the resulting equétions become

e~ HNg 0cnr1 /5 (1me~E0N) 3

>
n

e~kan

3 5 tanh[1/5(1-e~¥9M)] . (4.53)

>
"

The results for the traveling waves (4,52) are similar to the results

for standing waves (4.31) for the case of no combustion. A disrurbance
initially having the form of the first mode eventually is transformed into
one having the form of the second mode. To compare these results for
standing waves and traveling waves to the general perturbation equatioms,
two computer programs were written (Appendices D and E) which numerically
avaluate the modal amplitudes of various conditions for standing and

traveling waves,

i i S B 5 bt R
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One last speclal case is an investigation of the effect of the

correction variable K. In the special cases previcusly discussed, the

corraction variable K was set equal to zero. But, in this discussion,

the correction variable K will be of primary importance in the equations.

To start this analysis, refer to equatibns (3.21). Based upon these

equations, impeose the following conditions.

First, neglect combustion

effects (i.e., n = 0), Then, laet us consider only the case of standing

waves (i.e., 8 =8, "= 0). Finally, let us neglect the steady state

2

burning rate (i.e., 0 = 0) and assume that the terms multiplied by eK

are larger than those multiplied by ¢ above. This can be accomplished

by writing

K

o = gK

(u.54)

and treating Kl as a quantity of 0(1). Imposing the above conditions

and substituting equation (4.54) into the equations (3.21), the result-

ing equations become

dzfl df, df,
[1+Kl] " + fl + 2e[f2 %t fl 3?—3 = Q (4,55,.a)
d2f2 df,
[l+uK1] — uf2 - efl rratiall (4.55.b)
dt2 t
with initial conditions
fl(o) = 1

B L R R R
v

e T et
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B4
af
1 )
E—(O) =0
% f2 (0)=0
: 0
3 af
: 2
] OO0 . o '
First, assume a straightforward perturbation solution similar to the )
% 1 equations (4.6) except the functions are dependent upon the real time t.
' Substituting these assumed solutions into the equations and initial con-
ditions of (4.55) and keeping terms of 0(l) and 0(e), the separated )
; } equations become v
- |
] i
s 2 ;
4 10 1
,«_ + £._=0 « (4.56,a) )
qt2 | CI¥K) 10 '.
]
d2f |
20 4 ;
+ £f,.. =0 (4.56.b) .
qr2 | (LK) “20 y
] d2f af df
‘; =+ (ij ) = TR “£20 Eﬁl:o - £ (4.56.c)
dt? 1 1
,,)
£y 1 10, ( : N
+ ( )f = f 4.55.d )
ae2 l+lGKl 21 +'+Kl 10 dt
:j )
with initial conditicns
flo(o) = 1 fll(O) = 0
?
i




dflo
-az—(o) 2 0
f2°(0) =0

(@
dt
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df
1l
-§§~(0) 2 Q

£5,(0) =0

'df21(°)

T 0 .

The first-order equations (4.56.a and b) can be solved by assuming the

usual assumed sclution for linear differential equations. Doing this

and applying the appropriate initial conditions, the results for the

first-order terms are

(4.57)

Substituting (4.57) into the right-hand side of (4.56.¢) the equation

becomes a homogenecous linear differential equation. Solving in the

usual manner and applying the appropriate initial conditions

fll =0

(4.58)

Substituting (4.57) into the right-hand side of equation (4.56.d), the

resulting equation becomes a linear differential equation with a particu-

lar solution. By assuming an appropriate homogeneous and particular

solution and evaluating the constants using the appropriate initial condi-

tions, the result becomes

B afacia

e o —
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~/THR, 2 L 9
[ JURE | sin t + N, sin ——tem ¢, (4.59)
21 I K K 1 e

1 1

Therefore, substituting equations (4.57), (4.58), and (4,59) into the
assumed perturbation solution and letting Kl = g, the resulting equations

becomea ‘ {

t (4.60.a)

fl 2 ¢o8
Y1+Ke

£, =% E;’(‘ [fﬂl‘f Sin m—2em t = Sin ——2m— t] | (4.60.b)
Y1tliek Y1+Ke

Recall that in the two-variable perturbation method, fl and f2 expressad

in terms of the perturbation variables were

fl = Al(n) cos £ + Bl(") sin £ {(4.61.a)

f2 = Aa(n) cos 28 + Bs(n) sin 2¢ . (4.61.b)

By transforming equation (4.60.a) into perturbation variables and expand-
ing the argument of the cosine function by the Taylor series and using
appropriate sum and difference trigonometric identities fl can be

expressed as

fl = cos %‘- Kn cos £ + sin -32-'— Kn sin § , (4.62)

Therefore, comparing this to equation (4.61.a), the functions A, and B,

must be
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é"‘ Al(n) 2 cos % Kn

f B(n) = sin 2 Kn | (4.63)
: e '
By similar procedure, it can be shown that evaluating equation (4.60.b)
3 ard comparing it to equation (4,61.b), the results are
R
Ay(n) = 5%E[sin 4Kn - sin Kn]
By(n) = gipfcos Kn - cos 4knl | (4. 64)
To show the validity of equations (4.63) and (4.64), the problem is now
solved using equations (4.12) which are derived from equations (3.21) by
4 the use of the two-variable perturbation method. To reproduce the condi- ?
.j ' tions imposed on the problem just discussed, let there be no combustion é
; v (i.e., n = 0), let there be no steadv-state burning rate (i.e., o = 0), 2
i i and let there be only standing waves existing (i.e., A2 = A, = B, = Bu = %
; g 0). Imposing these conditions on equations (4.12), the resulting equa- %
3{ tions become ’é
g%i + 5 KB, + S[AJA; + B8y = 0 iE
| - B, 1 g;
T - 7 KA+ (A By - Byl = 0

dA3

- leo 2 _a 272
T + 4KkB, + 5(B, Al =0
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dB
T - WAy - § AyBy = 0. (4.85)

3 1

In the previous solution it was assumed that the frequency correction
terms were larger than the gas~dynamic nonlinearities. To be consistent
with this assumption the following procedure is used. By a éhange of .

variable n = /K, equation (4.65) can be rewritten as

dAa

1 1 1l -
T + 5 B:L + CT4 [AJ.AS + 3133] = 0
dBl 1 1

-7 A +-5R-[A133 - B1A3] =0
1 2 _ 27 =
a'E"*“Ba*ax':Bl Al]~0

AB, =0 ., (4.66)

Assuming a straightforward expansion of the form

1
1% Aot A

>
1]
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b
P then substituting these expressions into the equations (4.66) and keeping
E terms of 0(1) and 0(1/K), the resulting separated equations become 1
: 3
. i0 1l i
g Jb - t3 B,p 20 ‘ (4.68.a) )
s
4 ‘ 4B : i
) R - A= O (4.68.b)
| >+ By, = 0 (4.68.¢)
|
K a8, ;
i —-—d—cw~ - uAao = o (ucsaod) {
dA
11 1 !
v -—a-&—- + 5 Bll 5 - 3{A10A30 + 310330] (4.68,e)
b o))
1l 1 - 1
dz - 7 My ® - 38030 ~ Biofao? (4.68.5)
{.
da
—~31 -Xp 2.4 2
% et 4By, = - §iByo7 - Ay (4.68.g)
‘ .
31 _1
‘., dcl. had L"Asl - '&{Aloaloj ('4.68-1‘1)
with the initial conditions
b v
3 Ay (0) =1 Byo0) = 0
. All(o) =0 Bn(o) =0 A
A
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Aggl0) = 0 Byy(0)

[1]
(=]
—

Aal(O) =0 331(0) =0 .

< . ‘ )
{ Since the first-order equations are coupled, differentiate equations l

k. ‘ (4.68.a and c) once with respect to [ then substitute equations (4.68.b |

and 4) into these equations resulting in

% b
1 Y
»‘: Ao 1,
5 + E‘Alo 0
4 az2
3 I
d*Aq,
+ lBAao =0 (4.69)
dg?
% As can be seen, equations (4.69) are linear differential equations b
o8
1 which can be evaluated by the usual manner. In doing so and applying
i the appropriate initial conditions, the resulting first-order modal ampli-
? tudes are y
,‘
{ A.. = cos éﬁ = cos =K
10 2 2"
L
: Ayg =0 . (4.70)
,i Knowing values for Alo and A, » substitute these values into equations
Af 5 (4.68.b and d) and apply appropriate initial conditions. The results i
F become
é | B,p = sin %ﬁ = sin %Kn 0
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3 b Substituting the results of (4.70) and (4.71) into the right-hand side of
j equations (4.68.e-h), the resulting equations become
dA '
3 11 2 .- -J&
i: dB
_a,_._tl z %“‘11 (4,72.b)
i L
; da
é "3%£ + 4831 = %-cos z (4,72.¢)
L
5 &
‘ dB
i 31 _ .1

Since equations (4.72.c and d) are coupled, differentiate both equations
once with respect to f and substituting equations (4.72.c and d) into the

appropriate terms of the new set of equations, the resulting equations are

d2a
31 + lBAal z - %-sin 4
.f dz?
d2B
. 31, lGBal = %-cos [ (4.73)
f dg?

Equations (4.73) are a set of linear differential equations with homo-
O geneous and particular solutions. Solving these equations in the usual
manner and using the appropriate initial conditions, the resulting modal

amplitudes are

1l
Ay, * 7% (sin4g - sing) = §E(sinuxn - sinKn)

AR NI Y T
PSR AR
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R 72
.
} B, = -—J-i(cosc - cosig) = —-'z'{cosl("l - cosh4Kn) (4.74)
s sl 2“ . 21‘, ¢ . e Y b,
2
' In a similar manner, the results for the modal amp?itudes All and Bll can
be determined to be
g |
’ | Ay =0 L
2 I
By =0 (475, 2
evaluated with the app:opriate initial conditions. Therefore, substitut- 3
ing the results of (4.70), (4.71), (4.,73), and (4.74) into the assumed | t‘
perturbation solution of (4.67), the resulting modal amplitudes become h
- Al=coa%1<n+... n
& - ain k
* H Bl - Sin 2 Kn + L] [ [ L p
.:. ( »5
A, = ==Asin 4Kn - sin Kn) +
3 ‘m . o 8
B, = =nA{sin UKn - sin Kn) + (4,76) ’J’N
.. 3 m‘( PR S . 1 L
3 " It can be seen that equations (4.76) are identical to equations (4.63) and
é (4.64). This indicates that tha two-variuble method produces the correct Oy
X1 :
it sclution. Equations (4.60) indicate that the presence of K changes the
A % frequency of each of tha first two acoustic modes and further renders the
) ,; ratio of the second frequency tn the first a non-integer number in general. ‘S
o4
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Equations (4.76) show how this effect manifests itself in the two-variable
perturbation solution.
These results can be used in another way. If the nonlinear terms

are neglected in (u4.55.a), the results are

dzfl
(;uxl) —=+ £ 30
de2 :
d2f2 df
(l‘H&Kl) ;-:;'- + sz - efl a:E- = 0
df, (0) af,(0)
£,0) = 1, == 0, £,(0) = o, T = 0. (W77)

It ea . .. y siiwm tha. equations (4.60) constitute the exact solution
of equation (4.77)., If the correspondisg tevms are neglected in equations

(4.65), the results are

dA
11 )
dn * E'KBl =0
&_.‘!’-KA = 0
dn 2 1
dA3 1 R ’
3-;‘-—'0'“1(33""5(31 "Al)=o
=3 uwkay - 2as, =0 (4.78)
dn " M3 Ty M5 T - 781

where
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A,00) =2 ;
B,(0) = 0
A(Q) = 0
B,(0) = 0. |

It can be shown that equations (4.76) are the exact solution of equation
(4.78). These facts ware used to check the accuracy of the computer pro- ’
grams to be discussed later.

In the remainder of this thesis, a comparison of the magnitudes p
of the modal amplitudes will be represented in graphical and tabular

form. Under a given set of conditions, the acoustic modal amplitude pro-

gram, the general perturbation program, and the analytical cases that

were programmed will be used and results compared. Varying certain con- ;

diti-ns will show their effect on the changes in magnitude of the modal ‘12
amplitudes through a set range of time which is related to maintaining

stability. From these various cases, it will be determined which param-

tudes and which in turn affect the stability criteria for combustion £

by the methods discussed above.
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Chapter 5
DISCUSSION AND PRESENTATION OF RESULTS

In this chapter, results are presented both in graphical and
tabular form which are representative of the results generated by the
programa listed in the Appendices B through E. From these representative
sets of results, basic observations will be made to observe which
parameters or conditions have the greatest effects on the problems of
stability. .

In Figures 3 and 4, modal amplitudes F, and F2 are graphically

represented versus time for a stable standing wave case. For these

figures, F,(0) = 0, F,'(0) = 1, F,(0) = 0, PQ'(O) 0, 64(0) = 0, G,'(0) =

0, 6,(0) = 0, Gz'(o) =0,n=235,1i=1, K=0, € = 0.1 and w = 0.1.

The step size used was 0.1, Experimentation showed that this was a small
encugh step size to produce accurate results and was used throughout.

From these figures, one notices that both the first and second order modal
amplitudes decrease in amplitude with increasing time. Also, F2, the
second order modal amplitude, tends to oscillate at twice the frequency of
Pi‘ These figures are based upon one set of parametric values; however,
these figures represent qualitatively the results obtained using a wide

variety of initial conditions and parametric values. In Figures £ through

8, modal amplitudes Fq, Fz, Gy, and G2 are graphically represented versus

1

time for a stable traveling wave case. For these figures, rl(o) 0,

B

F,'(0) = -1, Fy(0) = 0, G,(0) = 1, G,'(0) = 0, G,(0) =0, G,"(0) = 0,

n=15,1 =1, K= 0, 0w = 0.1 and ¢ = 0.1. The general shape of the

75
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curves and the relative frequencies of oscillation are qualitatively

similar to the stable standing wave case,

In Figures 9 and 10, modal amplitudes F, and F2 are graphically
represented versus time for an unstable standing wave case with the
same conditions as the stable case except that n = 50. As can be seen, ,)5
the maximum amplitude of F1 starts to de;rease then increase dramatically g

for increasing time. The maximum amplitude of F, increases continuously.

In Figures 11 through 14, modal amplitudes Fl' FQ, Gi’ and G2 are
represented versus time for an unstable traveling wave case. Again, the
conditions are the same as for the stable traveling wave case except that
n = 30. Drastic increases in amplitudes are observed for all the modal

amplitudes shown as time increases. The behavior is similar to the

unstable standing wave case. The period of time for traveling waves to
become unstable is about one-half the period of time for standing waves
to become unstable, Thus, it seems that traveling waves are less
stable than are standing waves.

In Tables 1 and 2, a comparison of results is presented for modal
amplitudes F1 and F2 for a stable standing wave case. For these cases,

1, Fp(0) = 0, F,'(0) = 0, 6,(0) = 0, G, '(0) = 0,

Fy(0) = 0, F,'(0)

#

G,(0) = 0, 6,'(0) = 0, n = 60, € = 0.1, and @ = 0.1. These tables
quantitatively show the effect of neglecting gas dynamic non-linearities

on the accuracy of the computations. Also, a comparison can be made
between the exact solution method (Appendix B program) and the perturbation
; solution method (Appendix C program). From Table 1, one can observe that

1 the effect of neglecting gas-dynamic nonlinearities is small where

quantitatively comparing values of the modal amplitude F,. Even though,

quantitatively, the values for the exact solutions and perturbation
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Table 1. Comparison of Rasults for Fl Showing Effects of Gas Dynamic
In'd.x (1) - (Pl L 0’ Pl' L l’ P? L 0. P2' = 0, Gl L 0, Gl' L 0’ G? L o,
Gy' ® 0) - Stable Cases (n = 60) - Standing Waves

1= i=0
K=l K=1

t Exact Perturbation Exact Perturbation

Solution Solution " Solution Solution
0.2 0.196%9 0.18712 0.19699 0.18702
0.4 0.38335 0.36426 0.38336 0.36386
0.6 0.55252 0.525u40 0.55259 0.52462
0.8 0.69856 0.66518 0.69885 0.66400
1.0 0.81627 0.77905 0.81719 0.777158
1.2 0.90132 0.86340 0.90354 0.86186
1.4 0.95043 0.91572 0.95u489 0.91443
1.6 0.96159 0.93461 0.96936 0.93399
1.8 0.93432 0.91986 0.94632 0.92040
2.0 0.86985 0.87244 0.88656 0.87466
2.2 0.77125 0.79443 0.79242 0.79884
2.4 0.64330 0.68895 0.66783 0.69602
2.6 0.49211 0.56003 0.51822 - 0.57016
2.8 0.32u469 0.41247 0.35021 0.42593
3.0 0.1u4827 0.25167 0.17115 0.26856
3.2 -0,03017 0.08340 «0.01142 0.i0366
3.4 «-0.20430 «0,08633 -0.19032 «0.06300
3.6 ~-0.36859 -0.25158 -0.35912 -0.225866
3.8 -0.51829 -0, 40659 -0.51242 -0.37879
4.0 ~-0.64917 =0.5460u4 -0.64583 -0.51727
4,2 -0.75738 -0.66519 -0.75583 -0.63655
b.4 -0.83921 -0.76006 ~0,83953 «0,73278
4,6 -0.89118 -0,82756 -0.89450 -0.80297
4.8 -0.91029 -0.,86556 ~0.91868 «0.84504
5.0 ~0.8944Y -0,87297 =-0.91049 -0.85789
5.2 -0.84300 ~0,8u4979 -0.86909 -0.84343
S.4 «0.,75726 «0.79704 -0.79483 -0.79656
5.6 -0.64071 -0.71679 ~0.68959 =0.72514
5.8 -0.49885 -0.61200 -0.55708 =-0,62988
6.0 ~-0.33868 -0.U48646 -0.40279 -0.51427
6.2 -0.16794 «0,3U4466 =-0,23365 «0.38244
6.4 0.0057y -0.19159 -0.05742 =-0.,23901
6.6 0.17554 -0.03259 0.11809 -0.08892
6.8 0.33582 0.12685 0.28578 0.06271
7.0 0.48221 0.28126 0.43974 0.21080
7.2 0.81134 0.42538 0.57552 0.35042
7.4 0.720u2 0.55435 0.68999 0.47703
7.6 0.80682 0.66387 0.78099 0.58653
7.8 0.86778 0.75032 0.84693 0.67550
8.0 0.90042 0.810%0 0.88644 0.7u124




Comparison of Results for F9 Showing Effects of Gas Dynamic

Index (i) - (Fy =0, F' = 1, Fp =0, Fp)' =0,0; =0, cl' = 0,6, =0,
Gy' = 0) - Stable Cases (n = 60) - Standing Waves

Exact Perturbation Exact Perturbation

Solution Solution Solution Solution
0.2 0.00012 ~-0.00u485 0.00003 -0,00253
e.u 0.00113 «0.01309 0.00043 «0.,00938
0.6 0.00u422 -0.02223 0.00205 -0.01865
0.8 0.01060 -0.02944 0.00602 ~-0.02784
1.0 0.02110 -0.03215% 0.01336 -0,03424
1.2 0.03582 «0.02854 0.02471 -0,03553
i.4 0.05397 -0.01795% 0.03497 -0.03023
1.6 0.07375 -0.00104 0.05816 -0,01798
1.8 0.09260 0.02022 0.07742 0.,00026
2.0 0.10749 0.0u4283 0.09521 0.02232
2.2 0.11543 0.06317 0.10863 0,0u514
2.4 0.11407 0.0776u4 0.11493 . 0.06516
2.6 0.10215 0.08319 0.11198 0,07891
2.8 0.07988 0.07788 0.09878 0.08357
3.0 0.04909 0.06128 0.07573 0,.077u5
3.2 0.01309 Q.03u61 0.0u4478 0.06031
3.4 -0,02375 0.00071 0.00929 0.03352
3.6 -0.05653 «0.,03632 -0.02639 ~0.00006
3.8 -0.08051 «0.07164 ~0.057u9 -0.03640
4.0 -0.09180 -0,10031 ~0.079u45 -0,07083
4,2 -0,08798 «0.,11801 ~0.08865 -0,09863
b.4 -0,06850 -0,12165 -0,08296 -0,.11571
4.6 -0,03490 -0,10993 ~0.06211 -0.11921
4.8 0.00924 -0,08353 -0.02786 ~0.10793
5.0 0.05868 -0.0u515 0.01610 ~-0.08257
5.2 0.10711 0,00077 0.06458 ~0.04571
5.4 0.14796 0.0u864 0.11144 ~0.00152
5.6 0.17534 0.09236 0.150u1 0.0u4u468
5.8 0.18493 0,12615 0.17593 0.08715
6.0 0.17466 0.14534 0.18393 0.120u42
6.2 0.14513 0.14699 0.17255 0.14004
6.4 0.09957 0.13035 0.1u4243 0.1u31u
6.6 0.0u352 0,09700 0.09680 0.12888
6.8 -0.01592 0.05073 0.0411 0.09857
7.0 «0,07104 -0.00295 «-0.017711 0,05557
7.2 ~0.114u8 =0,05745 -0,07205 0.00u88
7.4 ~0.14027 -0.10594 -0,11u471 -0,04743
7.6 -0,1u458 -0,14223 -0,13988 -0,09u498
7.8 -0.12628 -0.16158 -0.1u4384 -0,13189
8.0 -0.08716 -0.16128 -0.12556 ~0.15%352
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% E solutions are not exactly the same, the order of magnitude and behavior

o of results is similar. From Table 2, the same observations can be made

9 ; for the behavior of Fz‘ There is, however, more error, quantitatively,
between the results for exact and perturbation methods and a region of
qualitative inaccuracy between the exact and perturbation solutions exists
near t = 0. This takes the form of a diffevence in sign of F, between
results from the exact solution as compared to the perturbations solution.
This discrepency occurred also in the other calculations performed (not
shown) and will be discussed in more detail later in this chapter.

In Tables 3 and 4, a comparison of results is presented for modal

b amplitudes F; and F, for a stable standing wave case. The initial
conditions for the results in these tables are F(0) = 0, ri'(o) =1,

o Fo(0) = 0, F,"(0) = 0, 6,(0) = 0, 6,'(0) = 0, G,(0) = 0, G,"(0) = 0,

: iy n=u40,¢ = 0.1, and w = 0.1, However, these tables quantitatively

{ present the effect of deviations of the ratio of the second acoustic
frequency to the first from the integer value of 2 (this is controlled

L. by the parameter K). These results show that solutions for finite values

of K are qualitatively similar to those for K= 0. This indicates that

the ratio of the second acoustic frequency to the first does not have
(. to be an integer in order to produce the type of behavior observed here.
A ratio near an integer value will lead to similar results. Tables 3
and 4 also allow a comparison to the results generated by the program
L in /ppendix D for the approximate analytical solution (4.31). These
results presented in the last column of Tables 3 and 4 can be compared
to the fourth column in each of these tables to determine the accuracy
| of (4.31)., These comparisons present further evidence that the neglect

of gas dynamic nonlinearities does not have an important qualitative

effect.




TR

Table 3.
Variable (K) - (Fy = 0, Fy' =1, Fy =0, F)' =0,G =0, 6 =0,

Gg = 0, Gy' = 0) - Stable Case (n = 40) -

Standing Waves

92

Comparison of Results for F1 Showing Effects of the Correction

r—uwmm R IR
i =1 i=1 i=0
K=1 K=20 K=40
t Exact Perturbation Exact Perturbation| Analytic
Solution Solution Solution Solution Solution
0.2 0.19699 0.18707 0.19670 0,19678 0.19671
0.4 0.38335 0.36396 0.38172 0.38210 0.38186
0.6 0.55254 0.52u460 0.54785 Q.54890 0.5u4843
0.8 0.69867 0.66358 0.68903 0.69093 0.69029
1.9 0.81667 0.77635 0.79957 0.60302 C.80234
1.2 0.902u7 0.85935 0.87537 0.88124 0.88075
1.4 0.95312 0.91014 0.91361 0.92306 0.9230u4
1.6 0.96699 0.92744 0.91310 0.92740 0.92820
1.8 0.94390 0.91120 0.87u43 C.89468 0.89666
2.0 0.88523 0.86255 0.80001 0.82676 0.83027
2.2 0.79388 0.78374 0.69393 0.72690 0.73221
2.4 0.67u11 0.67805 0.56163 0.59954 0.60682
2.6 0.53129 0.54969 0.40948 0.45016 0.u45947
2.8 0.37154 0.40358 0.24432 0.28905 0.29627
3.0 0.20133 0.2u520 0.07300 0.11102 0.12386
3.2 0.02712 0.08039 -0.09782 -0.06u8u ~0.05085
3.4 ~0.,14491 -0.08439 -0.26190 -0.,235u47 -0.22097
3.6 ~0.30901 ~0.2u474 -0.41335 ~0.39410 -0.37989
3.8 -0,u45992 ~-0.39354 ~0.5u662 -0.53u53 «0.52152
4,0 -0.59287 -0.%52617 -0.65660 ~0.65139 ~0.64055
4,2 -0.,70387 -0.63813 -0.73872 -0,7u4028 -0.73261
by -0.78821 ~0.72574 -0.78928 ~-0.79890 -0.79446
4.6 -0.84362 ~0.78623 -0.80583 ~-0.82264 -0.82407
4.9 ~0,86746 -0.81785 -0.78760 ~0,81364 -0.82069
5.0 -0,85849 -0.81988 -0.73571 -0.77179 -0,78490
5.2 -0,81682 -0.79266 -0.65317 -0.69920 -0.71852
5.4 -0, 74409 -0,73757 ~0.5446H4 -0,59917 ~0.62456
5.6 ~-0,64352 ~-0.65697 -0.41585 -0.47611 ~0.50704
5.8 -0.51967 ~0,55405% -0.27311 -0,33525 -0,37090
6.0 -0.37816 | -0.43279 ~0,12272 -0,18253 -0,22172
6.2 -0,22516 -0.29772 0.02937 -0.02427 ~-0.0655u4
6.4 -0,06694 -0,15382 0.17767 0.13305% 0.09140
6.6 0.09056 -0.00€63 0.31714 0.28307 0.,24291
6.8 0.2u4192 0.13957 0.4u4298 0.41977 0.38308
7.0 0.38242 0.27867 0.55061 0.53776 0.50650
7.2 0.50795 0.40617 0.63563 0.63247 0.60850
7.4 0.61493 0.5177u4 0.69408 0.70029 0.68527
7.6 0.70017 0.60967 0.72786 0.73878 0.73407
7.8 0.76090 0.67898 0.72020 0.74667 0.75327
8.0 0.79476 0.72355 0.68609 0.72400 0.74234

5
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Table 4. Comparison of Results for F, Showing Effects of the Correction
Variable (K) - (F; = 0, Fi' =1, Fp = 0, Fz' 20,6 =0, Gi' = 0,
8, = 0, G,' = 0) - Stable Case (n = 40) - Standing Waves

i=s1 i=1 i=0
K=1 K=0 K=0

t Exact Perturbation{ ZIxact Perturbation Analytic

Solution Solution Solution Solution Solution

0.2 0.00011 -0.00400 0.00015 ~-0,00419 -0.00192

0.4 0.00099 ~-0.00996 0.00136 ~0.01035 -0.00696

0.6 0.00354 «0,01599 0.00479 ~0.01597 -0.01337

0.8 0.00860 -0,02013 0.01141 -0.01856 -0.01885

1.0 0.01665 -0.02071 0.021u9 -0.01626 -0.02113

1.2 0.02761 -0.01669 0.03443 -0,.00838 -0.01856

1.4 0.04072 -0.00793 0.04866 0.00438 -0.01059

1.6 0.05458 0.00479 0.06180 0.01995 0.00208

1.8 0.06726 0.01983 0.07113 0.03529 0.017u9

2.0 0.07663 0.03491 0.07416 0.04696 0.03278

2,2 0.08072 0.0u750 0.06910 0.05185 0.0uu472

2.4 0.07803 0.05521 0.05549 0.04793 0.05038

2.6 0.06793 0.05622 0.03u439 0.03468 0.04776

2.8 0.05081 V. 04957 0.008u1 0.013u43 0.03626

N 3.0 0.02816 0.03542 ~-0.01367 ~-0.01282 0.01697
3.2 0.002u4 0.01507 ~0.04246 -0.03978 -0.00745 ,
5 3.4 -0,02323 -0.00917 -0.05871 ~-0.06265 -0,03313 1
4 3.6 =0.0us54y -0.03425 -0.06410 ~0.07695 -0.05561 :
% 3.8 -0.06099 ~0.05679 ~0,05687 ~-0.07938 ~-0.07067 ;
3 4.0 -0.06735 -0.07356 -0.03727 ~0.06854 -0.07507 |
3- 4,2 -0.06307 -0.08196 -0.00764 ~-0,04530 -0.06722 ;
3 L) =-0.043802 -0.08040 0.02778 -0.01278 -0.,04759 :
! 4,6 -0.0235%5 -0.06854 0.06351 0.02408 -0.01872 '
3 4.8 0.00767 «0.04745 0.09363 0.05926 0.01509 j
{ 5.0 0.04187 ~-0.01945 0.11279 0.08668 0.04845 '

g 5.2 0.07470 0.01210 0.11719 0.10127 0.07573

‘. 5.4 0.10173 0.04330 0.10529 0.09987 0.09206

5.6 0.11915 0.07013 0.07824 0.08191 0.09414

5.8 0.12425 0.08905 0.03976 0.04959 0.08095 F

6.0 0.11586 0.097u5 -0.00u3y 0.00764 0.05395 :
6.2 0.09462 0.09402 -0,04711 -0.03736 0.01700 ’
6.4 0.06286 0.07894 -0.08154 ~-0.07807 =0.0242Y4 '

K 6.6 0.02438 0.05389 -0.10178 -0,10757 -0.06318

' 6.8 -0.01630 0.02182 -0.10409 ~0.12058 -0,03336

7.0 -0.05322 -0.01335 -0.08754 -0.11433 -0,10952

7.2 ~0.08237 ~-0.04728 -0.05423 -0.08921 ~-0.10854

7.4 ~0.09956 ~-0.0757% -0.00908 -0.04879 -0,09001

7.6 -0.10237 -0.09523 0.04092 0.00093 -0,05639

- 7.8 -0,09018 -0,10322 0.08777 - 0.05190 -0,.01267

8.0 -0.06428 ~0.09872 0.12375 ~ 0.,09586 0.03434
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In Tables § and 6, a comparison of results are presented for modal
amplitudes F; and F2 for arn unstable standing wave showing the effect of
neglecting gas-dynamic nonlinearities, It can be seen that the gas
dynamic nonlinearities have little qualitative effect on the results.

In Tables 7 and 8, a comparison of results are presented for modal
amplitudes F1 and F2 for an unstable standing wave case showing the effects
of K. The rasults for zero and non-zero are qualitatively similar.

These tables are representative of the cases that were investigated
in the course of this research. Only cases involving standing waves were
presented. The same behavicr, however, can be observed for the cases
involving traveling waves.

In Table 9, a comparison of stability boundaries is presented
based upon the interaction index (n) which is a measure of the strength
of the combustion process. For standing waves and the given conditions
shown, the stability limit for a process with gas dynamic nonlinearities
congidered and K = 0 is between 45-50, When both gas dynamic non-
linearities and the correction variable are considered, the stability
limit i{s increased to 67.5-69. TIinally, when considering only the
correction variable with no gas-dynamic non-linearity effect, the stability
limit is 72-72.5. The results show that the neglect of gas dynamic
nonlinearities slightly underestimates the stabllity boundary and that
the increasing K increases the stability limit.

In Table 10, a comparison of stability boundaries is presented
based upon the interaction index for traveling waves. These results provide
additional confirmation of the conclusions discussed in the previous
paragraph and also illustrate the fact that standing waves are roughly

twice as stable as traveling waves. This is consistent with the
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Table 5. Comparison of Results for Fy Showing Effect of the Gas Dynamic
4 Index (i) - (Fy = 0, Fy" =1, Fp =0, F)' 20,6 =0.6'=0,6,:=0,
1N Gg' = 0) -~ Unstable Case (n = 75) - Standing Waves
e e T
i=1 i=0
. K=1 K=1
.
t Exact Perturbation " Exact Perturbation
Solution Solution Solution Solution
0.2 0.19699 0.18717 0.19699 0.18703
. 0.4 0.38335 0.38215 0.38336 0.36402 |
- 0.6 0.55250 0.52613 0.55258 0.52513 §
0.8 0.69847 0.6924u 0.69881 0.66518 §
1.0 0.81592 0.80625 0.81700 0.77974 i
1.2 0.90030 0.86736 0.90294 0.86535 ;
1.4 0.94803 0.92126 0.95337 0.91952 i
" 1.6 0.95671 0.94184 0.96695 0.94089 :
3 1.8 0.92557 0.92873 0.94003 0.92921 :
2 2.0 0.85572 0.88276 0.87584 0.88529
4 2.2 0.75039 0.80579 0.77580 0.81106
. | 2.4 0.61u8u 0.70079 0.6u4411 0.70941
i 2.6 0.45593 0.57161 0.uB8677 0.58410
4 2.8 0.28147 0.u42287 0.31118 0.43963
in 3.0 0.09945 0.25987 0.12554 0.28107
| 3.2 -0.08272 0.08829 -0.06194 0.11388
E 3.4 ~-0.2586u4 -0.08588 -0.24371 -0.05620
. 3.6 ~-0.42307 ~-0,25669 -0.41342 -0.22350
g 3.8 -0.57177 -0.41827 -0.56608 =-0.38241 f
i 4.0 -0.70107 -0.56512 -0.69790 -0.52773 c
‘g ’ 4,2 =0,80748 -0.69228 ~0.80594 ~0.63u473 ;
i 4.4 -0.88721 -0.,79547 -0.88767 -0.75934 {
: 4,6 -0.93641 -0.87123 ~0.94056 -0.83825 ‘
k.8 -0.95124 -~0.91703 -0.,96203 -0.88902
. 5.0 ~0.92862 -0.93138 -0.94961 -0.91020 |
' C 5.2 -0.86710 ~0.91381 -0.90146 -0,90123 i
5.4 «0.76771 -0.86492 -0.81711 -0.86255 !
5.6 -0.63434 -0.78635 ~-0.69815 -0.79563 !
. 5.8 -0.47368 -0.68071 -0.54872 ~0.70274 !
' 6.0 -0,29439 -0.55149 -0.37551 -0.58703 !
) 6.2 -0.10598 -0.40299 -0.18717 -0,u45231 !
o 6.4 0.08258 -0,22558 0.008672 ~-0,30299
6.6 0.26374 ~0.06815 0.19691 -0.14391 .
6.8 0.43198 0.10715 0.37555 0.01979 !
7.0 0.58355 0.28009 0.53682 0.18290 §
7.2 0.71613 0.u4u4478 0.67707 0.34025 f
7.4 0.82779 0.59627 0.79428 0.48686 :
o 7.6 0.91635 0.72909 0.88737 0.61813 :
, 7.8 0.97878 0.83897 0.95535 0,72996 :
8.0 1.01111 0.92224 0.99664 0.81891 ;
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Table 6. Comparison of Results for Fy Showing Effect of the Gas
Dynamic Index (i) - (Fy =0, Fy' =1, Fp =0, F)' =0, Gy =0,
Gy' = 0, Gy = 0, G' = 0) - Unstable Case - (n =

75) - Standing Waves

P e——
i =1 i=0
K=1 K=1

t Exact Perturbation Exact Perturbation

Solution Solution Solution Solution
0.2 0.00013 -0.005u8 0.00003 -0.00316
0.4 0.00124 -0.015u4 0.00054 -0.01172
0.6 0.00473 -0.02691 0.00257 -0.02333
0.8 0.01210 -0.03643 0.00752 -0.03u48Y4
1.0 0.02443 -0,04077 0.01670 -0.04288
1.2 0.04197 -0.03749 0.03089 -0.04728
1.4 0.06387 -0,025518 0.0499y -0.03793
1.6 0.08806 -0.005425 0.07263 -0.02258
1.8 0.11143 0.02061 0.0966 0.00033
2.0 0.13027 0.049007 0.1186 0.02813
2.2 0.14082 0.07537 0.13504 0.05696
2.4 0.14005 0.09513 0.14236 0.08237
2.6 0.12628 0.10426 0.13796 0.09995
2.8 0.09967 0.10004 0.12064 0.10606
3.0 0.06242 0.08152 0.09109 0.09851
3.2 0.01860 0.04984 0.05192 0.07688
3.4 -0.02636 0.008166 0.0076 0.04283
3.6 -0.06636 -0.03858 -0.03628 -0.00096
3.8 -0.09548 -0.08436 -0.07362 ~0.046816
4,0 -0.10889 -0.12285 -0.09877 -0.0913u4
4.2 -0.10354 -0,14826 -0.10733 -0.12758
4ol -0.07873 -0.15626 -0.09688 -0.15016
4.6 -0.03636 -0.14461 -0.067u2 -0.15524
4.8 0.01909 -0.11361 -0.02153 -0.1410u
5,0 0.08104 -0.06617 0.03583 -0.10827
5,2 0.141u48 -0.00758 0.09778 ~0.06010
5.4 0.19206 0.055118 0.15638 -0.00186
5.6 0.22528 0.11399 0.20358 0.05954
5.8 0.23565 0.16121 0.2323% 0.11651
6.0 0.22067 0.19016 0.23779 0.16168
6.2 0.18130 0.19633 0.21796 0.18888
6.4 0.12201 0.17793 0.17434 0.19397
6.6 0.05019 0.13633 0.11182 0.17547
6.8 ~0,02482 0.07595 0.03808 0.13477
7.0 -0.09302 -0.02526 -0.03737 0.07614 :
7.2 -0.14503 -0.07144 -0.10uu8 0.006209 {
7.4 -0.17338 -0.140235 -0.15407 -0.06680 :
7.6 -0.17347 -0.19368 -0.17900 -0.13401
7.8 -0,14428 -0.22450 <0.17519 -0.18700 9
8.0 -0.08859 -0.22808 -0.14216 -0.21888 : 3
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Table 7. Comparison of Results for Fy Showing the Effects of the
Correction Variable (K) - (Fy = 0, F;' =1, F, =0, Fp' =0, 8 = 0,
Gy' =0, Gy =0, Gy' =0) - Unstable Cases (n = 70) - Standing Waves

i=1 is= i=o0
K=1 K= K=20

t Exact Perturbation Exact Perturbation| Analytic

Solution Solution Solution Solution Solution
0.2 0.19699 0.187155 0.19670 0.19687 0.19675
0.4 0.38335% 0.36462 0.38172 0.38261 0.38217
0.6 0.55251 0.52587 0.54791 0.55028 0.54942
0.8 0.69850 0.66615 0.68878 0.69371 0.692u9
1.0 0.81604 0.78072 0.79865 0.80767 0.80630
1.2 0.90066 0.86596 0.87280 0.88811 0.88696
1.4 0.9u887 0.91928 0.90775 0.93226 0.93184
1.6 0.95842 0.93925 0.90166 0.93878 0.93u68
1.8 0.92863 0.92554 0.85477 0.90772 0.91061
2.0 0.86067 0.873904 0.76962 0.84061 0.84612
2.2 0.75771 0.80166 0.65109 0.74802 0.7u4803
2.4 0.62481 0.696u48 0.50530 0.61107 0.62333
2.6 0.46860 0.56735 0.3u4194 0.u45807 0.47407
2.8 0.29658 0.41903 0.16733 0.268u9 0.30714
3.0 0.11649 0.25679 -0.01027 0.10616 0.129086
3.2 . ~0,06441 0.08639 -0.18416 -0.05313 -0.05327
3.4 -0,23973 -0.08618 ~0.34860 ~0.25962 ~-0.23280
3.6 -0, 40414 -0.25497 -0.49854 -0.42949 -0.40262
3.8 -0.55318 -0.41415 ~0.62912 -0.58151 -0.55621
4.0 ~0.68301 -0.55829 -0.73533 -0.70860 -0.68766
4,2 -0.78998 ~0.68250 -0.81197 -0.80859 ~0.79192
4.4 -0,87041 «~0.78258 -0.85399 «0,87u49 -0.86494
4.6 ~0.,92055 -0,.85525 -0,.85736 ~0.90u458 ~0.90388
4.8 -0,93689 -0,89811 -0.82008 -0.89755 -0.90718
5.0 -0,91671 ~-0.90981 ~0.74306 -0.85356 -0,87463
5.2 -0.85886 -0,89005 -0.63045 -0,80213 -0.80736
5.4 «0. 76447 -0, 83962 ~0.48925 -0.6626Uu -0.70785
5.6 ~0.63724 -0,.76029 ~0.32818 -0,52309 ~0,5798%
5.8 -0.u48340 «0,65u486 ~0.15634 -0,36111 ~0.42807
6.0 ~0,31100 -0.52691% 0.01809 -0.18308 ~0,25835
6.2 ~0,128868 -0,38083 0.18852 -0,076u5 ~0,07712
6.4 0.05445 -0,22156 0.34998 0.10764 0.10864
6.6 0.23170 -0.05445 0.498uM 0.37422 0.29176
6.8 0.39723 0.11u85 0.63023 0.46032 0.46509
7.0 0.54707 0.28072 0.74089 0.69003 0.62177
7.2 0.67846 0.43759 0.82500 0.81052 0.75551
7.4 0.78917 0.58027 0.87632 0.89873 0.86085
7.6 0.87687 0.70394 0.888886 0.95061 0.93330
7.8 0.93868 0.80457 0.85847 0.96357 0.96962
8.0 0.97109 0.87877 0.78419 0.93647 0.96786




T e o T, VT P T T Y

e e}

| e, S it e A N

YL N A R Y e LA o BARASAES i SLE" YRR T s L
)
98
Table 8. Comparison of Results for F2 Showing the Effects of the
Correction Variable (K) - (F1 = 0, Fl' =1, Fy = 0, Fz' =0, Gy =0,
6y’ =0, 6,y =0, Gy' = 0) - Unstable Cases (n = 70) - Standing Waves
i=1 i=1 i=o0
K=1 K=20 K=o
t Exact Perturbation Exact Perturbation Analytice
Solution Solution Solution Solution Solution
0.2 0.00013 -0.00527 0.00017 -0.00562 -0.00336
0.4 0.00120 -0.01466 0.00165 ~0.01557 -0.01219
0.6 0.00456 -0.02534 0.00619 ~0.02603 -0,02343
0.8 0.01160 -0,03411 0.01544 ~0.03276 -0,03305
1.0 0.02332 -0,03789 0.03024 ~-0.03218 ~0.03709
1.2 0.03992 -0,03451 0.05013 -0.02232 -0.03264
1.4 0.06057 ~0,02299 0.07306 ~0.01862 -0.01865
1.6 0.08330 -0.00396 0.09555 0.021911 0.00367
1.8 0.10517 0.02047 0.11324 0.04915 0.03093
2.0 0.1227 0.04692 0.12170 0.07264 0.05810
2.2 0.13242 0.07126 0.11751 0.08675 0.07947
2.4 0.13150 0.08922 0.09917 -0.0870u46 0.08978
2.6 0.11839 0.097153 0.06770 0.071414 0.08535
2.8 0.09328 0.11651 0.02679 0.04063 0.06502
3.0 0.05822 0.07467 ~0.01761 ~0.001408 0.03053
3.2 0.01701 0.04468 -0.05827 ~Q.0u828 -0.01348
3.4 ~0.02528 0.00567 -0.087¢g9 ~0,09196 ~-0.06005
- 3.8 -0.06295 -0.03778 -0.10041 ~0.12426 ~0.10122
3.8 ~0.09049 =0.07994 ~0.09221 ~0.13827 -0.12619
4,0 ~0.10337 -0.11504 ~-0.06290 ~0.12986 ~0.137385
4,2 ~0.09872 -0.13779 -0.01566 ~0.09854 -0.12u403
4,5 ~0.07590 -0.1442 0.04299 ~0.04785 ~0,08825
h.8 -0.03665 ~0.13261 0.10404 0.01493 -0.03490
4.8 0.01487 -0.1032 0.15731 0.07988 ~0.02828
5.0 0.07254 -0.05894 0.18315 0.13602 0.09131
5.2 0.12545 ~0.00u78 0.20424 0.17311 0.14357
5.4 0.17637 0.05266 0.18706 0.183575 0.17558
5.6 0.20783 0.10617 0.14284 0.163922 0.18070 g f
5.8 0.21824 0.14862 0.07764 0.115862 0.15640 P
6.0 0.20519 0.17409 0.00147 0.04509 0.104985 ’ ;
6.2 0.16949 9.17865 ~0.0733 ~0.03703 0.03331 %
6.4 0.11514 0.16089 -0.13397 -0.11757 ~0.04784 2
6.6 0.0u883 0.12229 -0,16972 ~0.182899 ~0.12564 %
6.8 -0.02090 0.06705 -0.173u46 -0.22122 ~0.18709 P
7.9 ~0.08483 0.0016% -0.14308 ~0.22468 ~0.22125 .
7.2 ~-0,13429 ~0.06594 ~C.08205 -0.19089 ~0,22111 { :
7.4 ~0.162238 ~-0.12723 0.00095 -0.12367 ~0.18495 !
7.6 ~0.16442 ~0,17433 0.09312 ~0.03255 ~0.11690
7.8 ~0.13960 ~0.20087 0.17949 0.06839 -0.02652
8.0 -0.09020 -0.218587 0.2u522 0.16276 0.07753
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Table 9. Comparison of Stability Boundaries Based on the Interaction
Index (n) - (Fy = 0, Fy' =1, Fy=x0,F) 20,06 20,6 =0,
Gy = 0, Gy' = 0) - Standing Waves - Epsilon - 0.1

Stability Boundaries

Gas Dynamic Index “Exact Solution Percturbation Solution
Correction Variable n - Stable -~ Unstable n - Stable ~ Unatable

67.5 ~ 69 67.5 - 69

e

i =
K=

72 - 7205 72.5 el 73

[}
L =]

F o ad
e ——

X

| ]

O =
T

45 ~ 50 4s - 50 :
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Table 10. Comparison of Stability Boundaries Based on the Interaction
Index (n) - (Fy = 0, Fy' = =1, F =0, Fp' 20,6 =1, 6 =0,
Gy 2 0, GQ' 2 0) - Traveling Waves - Epsilon - 0.1

Stability Boundaries

Gas Dynamic Index Exact Solution Perturbation Solution
Correction Variable n - Stable - Unstable n - Stable - Unstable
i=1
K=1 27.5 - 28 31.5 - 32

36.35 - 36.5

25-30
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approximate analytical stability equations (4.31) and (4.52). The
e perturbation method tends to predict slightly higher stability limits
E_é than the exact solution methgd for both standing and traveling waves.
Within the accuracy of the tabulated values, this is apparent only in

the first two rows of Table 10,

In Table 11, a comparison of the effect of different initial
conditions imposed on the stability boundaries for both standing and
traveling waves is presented. From the results of two sets of initial ‘ |
conditions for each case, it can be seen that the varying of initial

conditions has no significant effect on the stability boundaries for

both standing waves or traveling waves,

In Table 12, the variation of the stability limit with ¢ is

presented for standing waves. From Table 12, the results show that the

smaller the term epsilon the greater the stability limit. Therefore,

the order term has a significant effect on the interaction index. In )
? Chapter 4, a relation was proposed for the case of { = 0 and K= 0 i
E‘L‘ which was n = C/e where C is a constant. Assuming the validity of the g
. relation, the values for this constant are given for each given epsilon g

and interaction index. This shows that, in general, C is a weak function :
’C} of €.

In Table 13, a comparison of the effect of € is presented for
traveling waves when both gas dynamic nonlinearities and correction
variables are considered. Again, the results show that the smaller the
term epsilon, the greater the stability limit. The perturbation method

again predicts slightly greater stability limits than does the exact

solution method. Therefore, again, the order term has a strong effect

concerning the stability of combustion.




—— re—T T TR ST R TR ) YN I AN, 2 s e
o T T
W Sadisk P . G i sl gt hd b i aiad L akiGinatnl Al
ey 4 e b HVAMAN - K . R . 7 ‘

102

Table 11. Comparison of the Effect of Different Initial Conditions
Imposed for Standing and Traveling Waves for i = 1 and X = 1
Epsilon = 0.1

(a) Standing Waves - 1. ©y =0, F,' =1, F, =0, F)' =0
Gy =0,G,'=0,6Gy =0,6' =20

2. Fy=1,F' 20,Fp20,F =0
Gy = 0,6y' 20,06y =0,6' =0

%
i
]
§

Stability Boundaries .
Initial Condition Exact Solution Perturbation Solution b
Sets n - Stable - Unstable n - Stable - Unstable r
; 1. 67.5 - 69 87.5 - 69 r
§ 2. 65 ~ 70 65 - 70 2 h
: . ' I
(b) Traveling Waves - 1, Fy =0, Fy = -1, Fy =0, Fp = !
G =1,6' =0, 6=0,6, = .
2. Fy=1,F =0,Fp=0,F =0
Gy =0, Gy' = -1,0G) 20,6, =0
Stability Boundaries ! i
Initial Condition Exact Solution Perturbation Solution
Sets n - Stable - Unstable n -« Stable - Unstable
- - }
1. 27.5 28 31.5 32 Pﬁ
g 2. 27.5 - 28,5 31 - 31.5
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Table 12. Comparison of the Effects of the Order Term Epsilon -
(Fy =0, F' =1, Fp=0,F, 20,6 =0,6' 20,6, =0,
Gy' = 0) - Standing Waves - when i = 1,K = 1
Stability Boundaries
Exact Solution Perturbation Solution Constant

Epsilon n - Stable - Unstable n - Stable - Unstable C = ne

0.05 107.5 - 110 107.5 -~ 110 5.5

0.1 67.5 - 69 67.5 - 69 6.9

0.2 48.5 - 49.5 48.5 ~ 49.5 9.8
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Thus, from theae representative tables of results, It is observed
that the correction variable is important in the stability of standing
waves, but does not play a major role in the stability of traveling waves.
It is observed that the gas dynamic nonlinearities seem to have little
influence on the stability of either standing or traveling waves. It
is observed that initial conditions of the modal amplitudes have little
or no influence in the stability of either standing or traveling waves.
And finally, it is observed that the order term epsilon and, the inter-
action index governing the strength of combustion in the process are
strongly coupled thus affecting the limits of stability.

Before completing this chapter, it is desired to investigate the
sign discrepency mentioned previously between the exact and perturbation
solutions for f which occur near t = 0. For simplicity, it will be
assumed that i = K= 0 and that for t << 1 the first modal amplitude can
be represented with sufficient accuracy by f1 = sint. Then, the
equation for £, will be solved and the result simplified for t << 1,

This will be done first for w = 0 and then for w # 0. For g = 0,

(3.21) leads to

td

a2f .
-&—az + ‘\\fQ s k ewn [1 - cosi‘t] (5.1)

with initia)l conditlons

£,(0) = 0

fz'(o) = 0.

i
\
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Evalu- «ha homogeneous and particular solutions by the usual manner i

and evaluating the constants, the results become ,

% f2 2 %g-tﬁn [1 - cos2t - ¢t ain2€] . (5.2)

In terms of the perturbation parameters (4.1), equation (5.2) can be ;

] written as ; |
, S
3 e
‘ f, = '}'é‘ wn [e(:l - cos28) - n ainzc] . (5.3) ; r
: K\
! LN
E To the order of approximation € which the perturbation solution should ; K
: model, equation (5.3) becomes . ; E
{ £, = - 1 Tnn sin2f + 0Ce) "
] 2% =g umn sin2t + 0(e). (5.4) |
By expanding equation (5.2) into a Taylor series expansion of three terms,
equation (5.2) becomes
1 - 4
f2 = '2"'F Ewnt + v e . (5-5) ‘
h

which is always positive,

Therefore, the exact method for small time will yield f2 modal ,ag

amplitude always as a positive quantity.

By imposing identical conditions to the perturbation equations |

(4.12), the result becomes t
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5
dn g'm wn (5.6)
with the condition
52(0) z 0,
Solving equation (5.6),
B, = - 2 &nn (5.7)
2 16 * '
Recalling that f2 = B2 sin2g, the result becomes
£ = -3 onn sin2¢ + 0(e)
2 i6 - (5.8)

which is identical to the result of equation (5.4) for the wave equation
solution. Thus, the perturbation method gives the correct result. It
can be seen that for t << 1 the exact solution predicts a positive £,
and by inspection of equation (5.8), the perturbation method predicts a
negative £e This is precisely the behavior observed in the numerical
solutions.

For w # 0, a similar analysis can be performed. The appropriate

equation for £, is now

d2f af

3;52-+ W 3;1 t uf, = kemn[ 1- cos?t] (5.9)
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with conditions

fz(O) =0

fz'(o) = 0,

Solving the homogeneous and particular solution by the usual manner and

evaluating the appropriate constants the result becomas

t + = €wn ~ i sin2£]

- 32 - @
, & [e 3 ] sip 716 -2 is L

*  (5.10)

Expanding (5.10) for small w into the appropriate Taylor series, expanding

and neglecting terms of 0(w) leads to

f2 = %E ewn [i -~ cos2t - ¢t sin2t] (5.11)

which is identical to (5.2).
By imposing the identical conditions on the perturbation equation z

(4.12), the resulting equation become

dB i . -
3;1 +% 3B, = - Iz in (5.12)

with the condition

s s o i gt gl o g i e e, i, ot s s s iEERa st e Tt o s ik ba i b onnis W7
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B,(0) = 0.

Solving equation (5.12) by the usual manner, evaluating the constants,

and transforming the perturbation variables to real time variables

£, = - ne [1 - e -kwt] sin 2t, (5.13)

m':!

This is always negative for t << 1. Expanding the exponential function

by the Taylor series expansion and neglect terms of o(w) leads to

£, = Tensin 26 + 0(e) (5.14)
which is identical to (5.8).
To observe the behavior of equation (5.10) for small time,
expand this equation into a Taylor series of o(tt), Expanding and
grouping terms according to their order of magnitude, the terms of
0(1), 0(t), 0(t2), 0(t3) vanish. Therefore, f2 is comprised of terms

from O(t“) which is

-l - -t
. €nwt 3w W
P T [1 te T su] . (5.15)

Again, for any small time t, f2 is always positive since tu is always
positive. Neglecting higher powers of w, the resulting equation becomes
equation (5.5) for the undamped case, Again it can be seen that the
exact and perturbation methods predict opposite signs for f2 when t << 1,

These results are based on approximations and cannot be considered

TP AT TR T T A




110
definitive. They do, however, lend plausibility to the numerical results
discussed sarlier. M is believed that this sign discrepancy is due ~15
to the inability of the perfurbaticn solution to accurately represent '
the exact solution for t << 1 and not due to any error in the computer

program used to compute the perturbation solution.
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Chapter 6

CONCLUSION AND RECOMMENDATIONS

The primary objective of this présentation has been the development
of analytical techniques to solve the problem of combustion instabilities
occurring in an annular combustion chamber. The analytical techniques
used were the modified Galerkin method applied to the acoustic wave
equations which yielded a set of time-dependent modal amplitude equations
and the two-variable perturbation method which yield a set of time-
dependent equations which approximated the behavior of the first set of
equations. Both methods produced results which were relatively easy to
apply and used the Runge-Kutta algorithm which required little computation
time. An alternative approach to solve this problem would be a finite
difference approach. However, difficulties can be foreseen in the
development of the finite difference equations modelling the problem
along with the complications occurring due to the boundary conditions of
the problem. Thus, the benefits of the methods discussed in this thesis
can be appreciated.

From the numerical and graphical presentation of results in Chapter
5, the following observations can be made. First, the effect of the gas-
dynamic nonlinearities seems to be small in both methods of analysis for
velocity sensitive combustion. This point can be observed from a
quantitative comparison of the tabular results or by observing the effects

of this condition on the stability boundaries. Second, the effect of the
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camrection variable modelling the physical boundaries of the chamber seems
to have a significant effect in both methods of analysis for velocity
sencitive combustion. By including the effect of this correction variable,
a significant increase occurs in the interaction index which is the
criteria for the stability of the system, However, this effect seems to
be more significant for the standing wave case than the traveling wave
cases. The effects of initial conditions for the time dependent equations,
the numerical value for the burning rate and step size of integration,
seem to have very little significance in the measure of the stability
limits of velocity sensitive combustion. However, the order term epsilon
has a strong effect upon the stability of the problem. This is to be
excepted since the order term is the measure of the effect of non-
linearitlies occurring in the system. The increase in this value corresponds
to a decrease in the stability limit which is physically reasonable.

In this study, the effect of time delay of the combustion process
was neglected. However, time delay has been found in other studies to
be an important phenomena in correctly modelling the actual problems of
velocity sensitive combustion. It is recommended that this effect can
be incorporated by including the corresponding terms with j = 1 in tﬁé )
acoustic wave equations (3.20). A corresponding set of perturbations can
then be derived to account for time delay and both these equations and
equations (3.20) can be numerically evaluated by modifing the existing
Runge-Kutta programs presented in the Appendices. It is also recommended
that an experimental program be developed to measure the effects of
velocity sengitive combustion in an annular combustion chamber. Once
achieving this goal, one could correlate the measurement results to the

analytical results that have been presented to ascertain the validity of

this analysis.
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Since instability of combustion is sensitive to small changes in
engine geometry and operétlng couditions, a particular angine must be
subjected to a large number of firings before its designers can say
confidently that it is free from instability. With a large engine such
testing can account for a substantial part of development costs. Herein
lies the importance of devising reliabl; theories of instability and
inexpensive tests of a propellant’s acoustical characteristics. Until

instability of combustion 1is understood well enough sc that it can be

eliminated while an engine is in the design stage, rocket engines must
continue to be intensively tested for stability--particularly when
the lives of astronautes will eventually depend on safe, rellable

operation of the engine (17].
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GENERAL TIME DELAY FUNCTION

The development and nature of the time-delay function is of the
same form of the convolution integrai for impulse response in vibration
theory. The general form of the time délay function is

t
dwo

wit) = [ ate - 0 g2 e 7Y
0

A simple illustration of the time delay function is in the case of a
finite step function J(t).

J(t)

b

1
(some specific time constant)

Figure Al. Step Function J(t)
From the figure, the step function J(t) is defined as

l t <cx

J(t) =
0o t>rt (A.2)

Therefore, substituting some time delay (t - £) for time t, the result is

119
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\: 1t'€<f
J(t - ) =
0 t~&§ <1
or
l t -'1 < g
J(t - §) =
0 t-t>1t ., (A.3)

Graphically representing equation (A.2) results in Figure A2,

J(t - )

lm—--. -----

0 t-£ t

Figure A2, Step Time Delay Function J(t - §)

Substituting into the general tlime-delay integral the particular step

function in terms of the non~-dimensional variable £

t -1 dwo t dwo
m(t)=j 0 == dg j la---dE,
: & (A.4)

Therefore, simplifying equation (A.3)

w(t) = wo(t) - wo(t - 1) (A.5)

where wo(t) is a generalized function of time and mo(t - 1) is

functional time delay.
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APPENDIX B

RUNGE-KUTTA PROCRAM OF THE MODAL

AMPLITUDE WAVE EQUATIONS
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FIOsFLIP4((T142,aT242,4T34T4)/5,)
F27=c290((Ul‘Z-*UZ‘?-*US‘U“)’&-)
Glp=3190((U102-'1202-*43‘75)/6-)
3223224 (( Al e2,en2el,xn3edb)/5e)

1=
Z=
als
¥4

(@)

AC 1 z=F 124 EPSA(=FLeF2-30i032¢2.5#(GL2vi2P4F1P#F22))
ACP23=F22¢0 5256 =0,25%CaleGl~T1#F1)40, 25a(F1P#F1P=G1P
1:CiP))
ACPT2=312¢EPSw(=FleG20F2e31 ¢, 5e(FLPw;20=GLlR#72P))
ACPL==3224 7050 (N 5eFin31¢0,5¢712+G1P)

TzTeo
LaLel
IF (L +€2., 3) 30 TH 110
30 T3 100 |
ARITS (5057) TrFlrFZ;SloSZ»ACP!?&CPZ'ACp3ulCPh {
FORMAT (1XaF3uta3XsFluedr 2XoFl 2050 3% FL1Ie522X0F100505X |
1rF17322%XsF 10635 3XsCL0.3»2XsF1065) ‘
L=l
105 CCNTINUE

CiLL EXIT

END

[P

11
3i

-




- W ' . RREAT o 5 LHER T L d o By R 1) s wwwmmqﬂ?w:‘wvwwwv;n W”.WWW‘"\'WW\W"T’T"""NF'T" S P TR RNUET,

b o “ D S ’,.ML‘-,. ‘- ,’ ‘ .,..,.u.,.‘i . 4:': ;".ﬁ, ‘»,. N "y?" [ -.\5. Al 4 - . A TS Y VTV RO P .
_ . . , ' N ‘ .
‘ ' ot \ . ! 4
s y . .
. 5 ’ - Y , N . ¥
oA ; ! . i
. o " : . !
' J o B \ 4
t . N N
) N , N :E
. . ‘ ]
“ A ; o ‘a
. ' : A
N 4 i
. i
é
\ I"" ; N ! : ” }
v ) ' :
! ) . ) ;
1 . , ;
]‘ by
. ) b
| -
i o
! 1
V ! t »
v \ ~
! M N A\
vy
.. APPENDTX C
RUNGE-KUTTA PROGRAM OF THE
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€ GAasy A WQQOVQLD NON=LINEAA COﬂBUSTlQN 2AATIONS DERIVEID ’ i

C F3dv THE X

¢ YdJ'viﬁllaL‘ SERTURBATION 1'THOD ; }

& .’ |

. C GIVERNING EQUlrlJNS"CASL = NO TIME DSLAY (J=3) » g

S Coa ' S : . ) . ‘f?‘

E10T531031042,325A3033504,34)a(=0e525133%A1~0. Sex#gl ; é

\1'3.5'(*(\1'i3031'33‘Q?'45052'85)'0 S'NEJSAP'(310\3'A1 | 3

20E3¢32 04442034 ))EPS ;. i

Et(Tnll:il0‘2032v430330k&a36)‘(‘0 5*:168'3140.5'K*A1 ! ﬂ

: e 1= 5.1*(\139331‘QS’QQ'QZQA’*G%)‘J.)*V'NQQR‘(AI*AIOSI o
y 2'=3u7~.w¢a’~34. )" EPS I

s . A (7541931»QZD371A3o33ai‘o35)5(‘0-*'53u3*h"0 Sex 32
A ‘ 1-3 SWIefQ) wdhi 310342202403 232033 ) 5eNNATARCC AL AL
2ol eaZx3T=AT432 ) ) ERS .

E4CTrAlol1082,32,43535024s3%) 2(=Co 5251537824 0uSex ed2

L S 1ol 3ale(Th 080 03] 423032942433 ).ateadaaaataxaAaoal

i - "-e«~aznas 32€¢33))ePs y 3
B ' S(T2ALr31 0 2,22,43533,544534) (‘0.5':1b3?A3 botx#33 e
3 - 1<,.1?:-x~<Aa-a;~3z-azoaz-ex V1#41)=0s 125 ¥ WIARNNV(ALw3] g 5
o 2=A2¢32))e2Ps : i
3 CECToALr31 2 02032,435335A040306) 2(=0a5251534834400K#a3 : ag
A 1=5250) @A 2432401 ¢31)=0uN625ed IARWNR (4244282432 11041 ! y
: 2¢EL®21))0SPS _ ! 3
s T7CT/ 41031 082532043033546534) 2(=0.5251G3%A4=40ex#34 R
3 19C.25elw(31¢3241012)=0,025003akeNel Al e32¢42¢30))eERS | o
1 E9CTod1,3L282,32,43033,84,304)2(=0u0x5133 23440, ,0Xn84 i o
¥ 16Ge25 0T w032 0820 42031)40,125% ARMN®(410A2=30032))eEPS j ;
k. c : 9
3 DIMZNSION FLE500)aF2C530)061(500),32(520) . A
FIA1 KaNed R
3 L=l TS
K. IT=0, o
1 C FEAD INITIAL CINJTTIONS AND CONSTANTS N
] C . . ;
1 c E2S<2RDEY TERM (£PSILIN) o ‘“i
1 € W3AK-STEADY STATE BURNING RATE S
1 ¢ AN=INTERACT IOV INOEX A
3 c K=CIRRECTINN VARIA3LEZ (JAFFLISsWALL LININGS»NOZZLES

! ¢ pETC 4D

: ¢ 1-345 DYNAMIC INDEX

1 c A 31,42, 32,43533,44,36=M)DAL 4YPLITUDES COSFFICIENTS

- c s

; READ (5»1)) wiARPNo Ko NMAXSEP 501

1 1C FORMAT (3F10.4s135,2F10e4)

1 READ (5,12) ALs31,42+32+430335 0030

] 12 FCARMAT (3F10.0)

) c

1 C FEAD STEP SI2E

1 ¢
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RI4D (Sele) M
146 FLeMAT (F10.9%)
SI332w3AR/ERS
NRITT (6020) 51G32a3ASeNsKsHIEPSSHI
20 FCSMAT (IX ol Xp? SIGMA SARI,FLU0r /0l Xo o X P STERDY STATE i
d. 1 JUSNING 2ATES{WBAR)*»T 100k olXriaX e INTZRACTEION INDIX
1 2oCN)YSF L1004 p/a 1 X ol R CORRECTION VARTAALE=CR) "+F 104k
SoUX0Xa'STEP SIZE(M) 'S F L aln /o1 XadXo 'EPSTILONCEPS)!?
GrFldad o/l XodXaGAS ODYNAMIC INDEX=CI)'»FL104in’?)
WRITE (6030) A1,81,02,325435330004,34
33 FOAMAT (Lot INITIAL COMDITIONGS 2779280 sdXs ALY »F10ab,ptX
Lo'BLt oFl0ear/o L Xt Xo? A2 F10s4sr3Xst'B32'F10s4s/s1x0sbX
‘ 2,0880 oF 1006 eB8Xs '330 0P 1000s/ ol Xobkko ' ALTSFY Outes IXs? 34" {
IsFlYalnt?/) :
ARITE (5240) ¥
G0 FCRMAT (1Y oXXo YTIMEY,IXs 041 95 X5 5] "o 12X A2, 11Kt 32¢ F
Lol Xp v 11X, 1330, 10X,%04,1CX,%'24%,7)

FLNSE SUTTA ALGIRI THN |

(2N = N >

DC 170 J = lonvaAx
Y

O

PlesHegl(T,ALsd10A2,32,A3s33s104s34)
Jl=42Z2( 20 Lr3l 42032, A3083044034)
RISHOEZ(Tr Alod1,42,320435325040»30)
Sl 6lTrA1031,A02,82,43033004,534)
Tl=rd®S5(Traler3lsrA2,32,43,33,040R4)
UlzHe S5 0T, A1,31,420,325Aa803300s34)
VI=4eET(ToALr31542,820235335124,34)
WlaNeZA(ToAL1s31,A2,32,0438,33024024)

PA
(]

P22He S (ToH/20sa19P8/240314G1/72e,82081724932451/7200A3
LeT1/7240330017200 0080V )7240344n1724)

GE2HaE2(ToH/2 e ALPL/ 0r 3L 4Q1 7240 A24R172 032431 /24043
1001720033041 72e2249V /20034087 2:)
e RE=40E3CTo /20, A14P1/2,031¢Q1/20rA2¢R1/2,532451/24543
-, 14T1/720033¢U1720pAltV1/2.536941724) , }\
S22HAEL (ToM /200 AL OPL/2,281400/2:0\2¢R1/72.502435172.»43 :
1eT172,03340 U720 Abev1/20r30844172,)
T224ef5(TeHd/24pALeP8/ 2,08 400 /2408245172 .032¢51/7245483
L1eT1 /7245330017200 A00V1/20030041720)
h) U2 4% (T o H/2.0 ALPL/24rRLl4QL/R0rA24R51/24032¢31 /24043
; LeT1/7240380UL/7249840V1/24034¢01/20)

VEA I P TIHZ20o 0 19P1224031001/724902¢0801724032¢31/72401A3 ’
1011 /72e0330 872000 beyl /20030417 2.) |
RezHOEBCTe /2.0 A14PL/2,»310017240A2¢R1/2,4582¢51/7240A3 :
LeTi/20033¢Ut/2 00 Aled 1/ 2.084404L/20)

STy

Plaquil(Ted /2,0 A14P27/2,081402/7200A2¢R2/20+32452/2:0A3
1072720330 U27200009V272498344A2/724) :
Wi=HCE2(T e N/2,0 AL 4P2/72.+81¢0272¢90A2¢R 2724832452724 9043

)
2
1
E
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10027200330 U27240h40V272,,84402/72,)
RIsnCICTOH/er A 10P2/240BL0022209A2¢72/724932952/72e27%
101272003340 U2/72.00040V272,034e482/72,)
SIZHCEACTON/200 A P2/ 2,.58L40272404203272403245272404A3
Lot2/72e033¢052722,050060V2/7240934402/724)

TR 4wt S(TeH/ 20 A30P2/72¢2314¢02/7260420R2/724932¢52/24003
167272403 30U2/200384¢V2/24034442724)

UdaaEB TOH/2ur AL 4P 27240 B1402/7240A2¢R2/724982052/240A3
1472720839 U2/72e0A00N2/24.08L%42724)
VIsHEET(TOH/2.0AL4P2/72.0319Q2/72.0A2¢R2/724032¢52/2.40A3
1eT12/72:003305272.0044V272.084442/72.)

Al eSS 3CTeH/200 ALAP2/72.0Bl402/240A24%2/24p3205272,.0A3
112720330 U2/7242840V2/7240BL¢42722,)

PexHeEL(TIHIALeP3,RL403»A2053,32¢53,A3¢T3,330U30A4ev3
lrodaedd)

AUSHRED(TeHpALeP 3, 31+403,42¢F83,82¢5 358307303300 TrAbeyS
LrEhedl)

Sz 4o I3 (TeHIAL4P3s31 403, A24F8,82¢53,243¢T73,3340300040y3
1536¢43)

34O a(TeH ALOP 3931003, 020F83,82455,434T73,334U350640ev3
1»B49al)) )
TAasHOISCTOHIAL4IP3, Bl A24RI+B2953,03¢T3,334UTpA0e¢v3
1,34443)

WAEHOEARCTe+ Mo AL4P 3931 ¢03sA2¢R3,324530334T7355305324840V3
1s84e43)

VOsda 7 ToH)A1¢P3,31403022¢6G3,32¢530243¢T73,33¢y830a4ev}
1sBbewi)

Az {eZ 3 (TeHoAL*P3aB1¢03) A2eR 5325504 30T35334U3srbeys
Ls3ueal)

Aled e (DL a2, 0P2¢2,4P3e¢Ps /0. )
313304(( 0102202424 023¢041)/6.)
AZBA2¢ ({1 42,00 202, %0348 4)/9,)
3223240 (21 42.2524¢2,483454)/6,)
AJ=a3e (Tl ¢2,2T242.2T347%4)706.)
3323F¢((UL 42,2020 2,003¢UbL) /5. )
NGB 244 (VL2 nV2¢e20v30VAL)/04)
BhsJUe (Al o2, 0n242, 048004 )76.)

TaTeH

FICJY=ALel OSCT )31 wSINCT)
GlCJ)BA2:C05CT)+32¢S5IN(T)
F2CJIASeCNS(2.0T)e3303IN(2.0 1)
G2CJImAURC OSC2.nT)edbnSINC2a"T)

LslLel
IF CL ~E3. 3) 39 70 110
30 T3 190
110 AFITE (605C) ToALlr31002,320030330A4,34

.
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S3 FCRMAT (1xaF8ebo IXrF10.502XoF 10303405 1045s2%sF10e503X
LoFldeS02XoFl0u5+o3XsFl0e522X2F10e5)

Lal

W0C CONTINGE

c

La}

T =)

ARITE (5,41) ’

bL FONMAT C1Xa /77751 %0 3%Xe "TIME Y o1 Xe'FLl'olOXs'F2P0llXstGl
1o12Xs 2G2%» /)

00 2306 J = 1,NVAX

TaToey

Lalel

IF (L +EY. 3) 60 7O 210

iC T2 2

ARITE (89300) TeFLUOI2F2CL)aLCI)e520)

FOR2AT (1 XaFRal s 3XaF10a502X0710e52342F10.5:2%»F10.5)
L=}

SCHTINLE

caLL ExITr
END
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PROGRAM FOR EXACT SOLUTION OF

STANDING WAVE CASE
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Gary 4 vCOONALD
ANALYTIZ SOLUTION=STANDING WAVE CASE
JI4ENSION F1C¢5320),F2¢509)
21=23.,161597248
EIVINS |
Xez2Del
NMAx =500
EF3z).1
NBAR=C.1
L=]

FEAD IN GAS DYNAMIC INDEX AND INTERACTIIN 1NDEX

FEAD (5,3) lsXN
S FOA4AT (I5,F1C.5)

INITIAL CONDETIONS

SEAD (S,1)) CLlat3pPHIL»PY] S
10 FORMAT (4F17%.4)

ARITE (65135) 1
LS FCAYMAT (1Xs'GAS DYNAMIC INDEX'SIS)

ARITE (5,15 XN
16 FOARVAT (IX» "INTERACTION INDEX'sFfTe25777)

ARITZ (5,20) C1lsaC3sPHILAPHLS
23 FOSMAT (1X»* INITIAL CONDITIONS'S /701X 4K "0t sF10albe/

Lo LAraXot 30 5P 1) atbn/olXabXr®PAll 0 sFLlDatassslXotXotOH]I 3

2rF10ebe/)

ARITE (5,37

30 FCAMAT (LXo2Xs ' TIME s LOX2 ALY 513X vA3513Xs%320,12X

1593530 ,156, 0 C1,12Xs '3, 11X PHIL'S1OX» "PHI3'5/)

23 1280 0 = 1,N14AX

Ke=KJeEDS

iF (XN oEQe JeeANDe I o223+ 1) GO T2 6w
IF (XN «ZQe 4D0aeANDs I oFQe D) GI TO S0

NC GAS DYNAMICS

S5 CONTINLE
Ro=led
52039355 #NeEPSe(=1,)nun))
T21le=IX0(=0,S2yBAR*xJ)
UsieT
Vsle 7C003CUY)
AZTXP(=UaSenBARRXY)
Clzdey
2=(3INCU)Y/ZEDSCU))
Cilz=(nW/2.32306 )2
PRrIL=PHIL
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A

PHIS 2 o PHIL=C(De0RYSL L I/20 1o ]
33 T3 290

COM3USTION

CONT INLE

*"g.

35*(5?5*(‘1.)"J)/(Zo'dgkﬁ)'
CT'!.‘EKP(‘C.S'NBQR'!J’

CL=CSegT

31‘2-/(5XP(CU)0lc/EXp(CU))
CazlXP(=3sSwnirioxy)

Cl=CHeCy
CZ=(§XP(:U)‘1-/EXP(CU))/(EXP(CU)0l-/EXD(CU)’
Slala/2,)eC2

PrIl1=PH])

PHI 3 =2,00u]1 =3 yep)

SINTINVE

AlzC1eCQ35(PHLL)

I1=CleINCPHIL)

A2223eC0SC2HTII)

Fi=CIaSINCPHLY)

Fl(J)‘il'CJS(KJ)031'SIV(XJ)
FZ(J"‘3'GO§(3.'KJ)!BS'SIN(Z-*XJ)

IF (L €3 2) 39 10 Suo

“sLel

I I ¢ B RV

Tid4Zaxy

ARITS (5+5000) Tlﬂaullo45»31035DC1DC3;PHIlnPHI}
FLvat CIXrF?-QuJXuFlOo5a5on10-50kX)FlD.S:onFIQ.S'SX

l»FlJ.SriXoFlO.SoQXoFIO.SnﬁX;’10.3)

L=]
CONT InvE

Auzda

L=t

ArITE (5+5000)

Farvar (lXo///oer3Xv'TlME'-ldx»'Fl'»lBlo'F)'!I)

eC 3304 = tavywax

XuzlJeH

IF (L €3, 2) 30 19 79y

Cstel

a0 ™ 30

Titz =Xy

dRITZ (5.,7000) TIMEsFLC(UIsF2¢ 3)

FOArvM AT (1&0?7-“06Xa?10.5p1XD?10-5»/)
L=}

CONTINGE

R e T e
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T ST
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caLL IxIr
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PROGRAM OF EXACT SOLUTION

OF TRAVELING WAVE CASE
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C  GAFY A MCOONALD i

C ANALYTIZ SOLLTION®TRAVELLING ‘wavE CASE *
JIMENSION F1C390)sF2¢500)s50¢500)s32¢507)

pl=;.l‘015925 !

Hz2.1 s

4 Xeuz)el ;
| NMAX =500 O

§ TFES=dl : i
.: A3 4R =Nel
: L=1

§ ¢
) C FEAD IV GAS DYNAMIC INDEX AND INTEXRACT ION INDEX
| c

R2A) (5»3) TsXAN
5 FI~4AT (153,F10.95)

PR 6 2 0.5 “RScin o

_ ¢
" C INITIAL CONDITIONS
d c

REZAD (3»12) AlrA2,430 A4 )
10 FURAALT (4F106w)
ARITS (651350 1 LR
15 FCSRMAT (1X»'53S5 DYNAMIC INORX'»15) .
ARITE (5»16) XN i
16 FORMAT (U1X, *1ATERACTIIN INDEX'YsFTe22/717/)
nRITE (5,20) A1s42,a3504 AN
26 FCRYAT (1X»"INITIAL CONOITIONS'»/Z/7+4X00Xs A1 sF 1) etbn/ %
LolXoloXptA20 sF2l0aler/rlXriaXpta35F1lCoan/rlXsbXrtAlY
22F1)eb0 /)
ARITS (3633
30 FCrAAT (LA s0Xo 'TIMEY» 14X A1 pLSKsTA2Y»15Xs0430,17X
o 1rtadb4t,/7) g
od 133 J = 1ouvaAX {“
XoZRJ4LPS i
lF (X‘i OE'Jo OOOAN')‘ I OEQO l’ GO T!J 60 ’
1F (XN eS0e 27e-ANDe I 23e 3) 50 T) 59 3 L
1

T

MO 3A5 DYNAMICS

oo

3 50 SCNTINULE |
= S8, 70711« EPSoXN |
T2le=CAP(=)eSnWdAR®XI)
UESHT
v=1./C0S8CY) L)
ASZX(=Ge5ed3avwX))
A A2=nwy
-3 £3314CUY/COS(Y)
] AG=(W/2.628472) 1
a3 T) 200

[ 3]

C NC CO43USTIN
c
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8g CONTINUE
CS=ZP3/u3AR
CToloa=EXP(=%eS*wIARY L)
CuaCseCT
Va2, 70EXP(CUNC L ZEXPLZYU))
CaziRP(=)e Sen3AR LX)
Al=CdeCyY ’
C2aCZXP(CUI=1a/7SXPICU))/ZLEXPCCU DL /2XPICYI)
Alz(Cw/2.)0C2
3L 10 299
200 81l=-A2
3Z=A1
dizeAd
34=2%
FLCJI2Ae20S(XJ)e3 2 a5INCXY)
GlCJ)=A2«¢C0SIXRIDI4324S5INCXY)
F2CJ)2A3r20S( 200 XJd)¢330S5IN(Cs vXJ)
32CJ) 2264008 2, ¢ XJ)+FLeSINC2. *X))
IF (L +E3. 2) 50 TJ 309
L=t+l
GO 1Y 17
SNy Tl4Z=2XJ
ARITE (955900) TIME»A1r42,A3,A4
SONC FLAMAT (IXsF7.0s7Xr (L (Fl2.825X)))
L=l
110 SONTINUE

Xez)ol
L=}
ARITE (%,50300)
6900 FISVAT (1 Xs /770 1%s 3Xo *TIMI s 2Xs'FL ' 15Xe'F2%516X»*51"
1,14X5 G2, /7)

-
-

99 37C J = 1,N¥AX
XKJ=XJeH
IF (L «£3. 2) 30 10 700
Lalet
30 T2 399
7796 TIMZaxy
ARITZ (6,7000) TIMESFL(J)IIF20U)sG1C(I)»32CJ)
7290 FORAT (X sF Po b X pFLlas5e?Xsm 10a528X2F 1) a5s74»F1).5)
Lel
30C SONTINUE
CALL EXIT
END
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APPENDIX F

PRESENTATION OF ACOUSTIC

PRESSURE CALCULATIONS {

!
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ACQUSTIC PRESSURE DERIVATION

To calculate expressions for acoustic pressure, recall equation

(2.48) which stated 2

el amitete m))

p=p3se . (Pol)

P PR

This equation represents the unsteady state deviations of acoustic
pressure. When expanding aquation (F.1l) into a Taylor series expansion, .
~F
the resulting equation becomes H
%F
p
2 R
2p=1.¢d84 2|52 . -39 2 9
P=p=l-ezfte (a2 + V¢ * Vo) -u 5t % 5% |
i
i
"'Aa‘. (F'2)

Recall that the steady state solution was represented in equation (2.35) by

g o2 [20)° a1
p=e Gﬁ ) (az) } . ™

When expanding (F.3) into its Taylor series expansion, the result becomes

p=1~ % (%g) 2 e
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where p is the steady state acoustic pressure. Therefore, the difference
in general acoustic pro;hure and steady state pressure can be expressed
by subtracting equation (F.4) from (F.2). For this investigation, a
restriction cn the velocity potential ¢ wus that it was a function of 8

and t only. In doing this, the pressure difference equation becomes

P-P=-¢ -2-% + -;-55(-2%)2 *(%%)2] . (F.5)

Using the same Fourier series expansion for the velocity potential ¢ as
expressed in equationk(a.la). the acoustic pressure difference equation
(F.5) can be expressed in terms of the product of modal amplitudes and
trignometric function in the transverse 8 direction. Substituting the
appropriate forms of equation (3,18) into equation (F.5) and simplyfying,

the resulting pressure difference equation become

- [ df dg dg df df ]
E-E . - 2
i " *‘[(flf‘ *3132“"(« T E _;dg cos®

+rdf +E[JG(81 -f )*k(.d_l) G.J)) c0s20

O

* EARER
3?“5[ (£18; - £80) + %5zt &> - &t sin0

dg f\/dg
* [‘ Tt ‘["faai th G?\)(dt ]] 8in20 . (F.6)

v o,
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Since the coefficients }ﬁ equation (F.6) are functions of time only,
these coefficlents have\boan included in the calculations of the program
in Appendix B. Thus, fcr any given angle 6, values for the modal

amplitude at any given time range can be calculated therefore determining

the acoustic prensure difference of that desired location.

.
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